natanielruiz
2017-07-07 6664c6d52fad58e396861946a3bed7d5afc4d44d
code/datasets.py
@@ -84,10 +84,51 @@
        # We get the pose in radians
        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
        # And convert to positive degrees.
        pose = pose * 180 / np.pi + 90
        # And convert to degrees.
        pitch = pose[0] * 180 / np.pi
        yaw = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        # Bin values
        bins = np.array(range(-99, 102, 3))
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        label = torch.FloatTensor(pose)
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, self.X_train[index]
    def __len__(self):
        # 122,450
        return self.length
class AFLW2000_binned(Dataset):
    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
        self.data_dir = data_dir
        self.transform = transform
        self.img_ext = img_ext
        self.annot_ext = annot_ext
        filename_list = get_list_from_filenames(filename_path)
        self.X_train = filename_list
        self.y_train = filename_list
        self.length = len(filename_list)
    def __getitem__(self, index):
        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
        img = img.convert('RGB')
        # We get the pose in radians
        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
        # And convert to degrees.
        pitch, yaw, roll = pose * 180 / np.pi
        # Bin values
        bins = np.array(range(-99, 102, 3))
        binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1)
        binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1)
        binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1)
        label = binned_yaw, binned_pitch, binned_roll
        if self.transform is not None:
            img = self.transform(img)
@@ -95,7 +136,7 @@
        return img, label, self.X_train[index]
    def __len__(self):
        # 122,450
        # 2,000
        return self.length
def get_list_from_filenames(file_path):