| | |
| | | import os |
| | | import argparse |
| | | |
| | | from datasets import Pose_300W_LP |
| | | import datasets |
| | | import hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | |
| | | |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | model = torchvision.models.resnet18(pretrained=True) |
| | | for param in model.parameters(): |
| | | param.requires_grad = False |
| | | # Parameters of newly constructed modules have requires_grad=True by default |
| | | num_ftrs = model.fc.in_features |
| | | model.fc_pitch = nn.Linear(num_ftrs, 3) |
| | | model.fc_yaw = nn.Linear(num_ftrs, 3) |
| | | model.fc_roll = nn.Linear(num_ftrs, ) |
| | | |
| | | # ResNet18 with 3 outputs. |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(230),transforms.RandomCrop(224), |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor()]) |
| | | |
| | | pose_dataset = Pose_300W_LP(args.data_dir, args.filename_list, |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.MSELoss(size_average = True) |
| | | optimizer = torch.optim.Adam(model.fc.parameters(), lr = args.lr) |
| | | criterion = nn.CrossEntropyLoss() |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': .0}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels) in enumerate(train_loader): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | labels = Variable(labels).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | outputs = model(images) |
| | | loss = criterion(outputs, labels) |
| | | loss.backward() |
| | | yaw, pitch, roll = model(images) |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0])) |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | # Save models at even numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') |