| | |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | # lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr, momentum=0.9) |
| | | optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | |
| | |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl') |