| | |
| | | " face_h = row[8]\n", |
| | | "\n", |
| | | " #Error correction\n", |
| | | " k = 0.15\n", |
| | | " x_min = face_x - image_w * k\n", |
| | | " x_max = face_x + image_w * (k+1)\n", |
| | | " y_min = face_y - image_h * k\n", |
| | | " y_max = face_y + image_h * (k+1)\n", |
| | | " k = 0.35\n", |
| | | " x_min = face_x - face_w * k * 0.6\n", |
| | | " x_max = face_x + face_w + face_w * k * 0.6\n", |
| | | " y_min = face_y - face_h * k * 2\n", |
| | | " y_max = face_y + face_h + face_h * k * 0.6\n", |
| | | " \n", |
| | | " x_min = int(max(0, x_min))\n", |
| | | " x_max = int(min(image_w, x_max))\n", |
| | |
| | | " #Crop the face from the image\n", |
| | | " image_cropped = np.copy(image[y_min:y_max, x_min:x_max])\n", |
| | | " #Uncomment the lines below if you want to rescale the image to a particular size\n", |
| | | " to_size = 260\n", |
| | | " to_size = 240\n", |
| | | " image_cropped = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA)\n", |
| | | " #Uncomment the line below if you want to use adaptive histogram normalisation\n", |
| | | " #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5))\n", |