natanielruiz
2017-09-11 898871a1ca98e6253d7aaaa7a47fac4bfd8f6833
practice/load_AFLW-Copy1.ipynb
@@ -100,11 +100,11 @@
    "        face_h = row[8]\n",
    "\n",
    "        #Error correction\n",
    "        k = 0.15\n",
    "        x_min = face_x - image_w * k\n",
    "        x_max = face_x + image_w * (k+1)\n",
    "        y_min = face_y - image_h * k\n",
    "        y_max = face_y + image_h * (k+1)\n",
    "        k = 0.35\n",
    "        x_min = face_x - face_w * k * 0.6\n",
    "        x_max = face_x + face_w + face_w * k * 0.6\n",
    "        y_min = face_y - face_h * k * 2\n",
    "        y_max = face_y + face_h + face_h * k * 0.6\n",
    "        \n",
    "        x_min = int(max(0, x_min))\n",
    "        x_max = int(min(image_w, x_max))\n",
@@ -114,7 +114,7 @@
    "        #Crop the face from the image\n",
    "        image_cropped = np.copy(image[y_min:y_max, x_min:x_max])\n",
    "        #Uncomment the lines below if you want to rescale the image to a particular size\n",
    "        to_size = 260\n",
    "        to_size = 240\n",
    "        image_cropped = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA)\n",
    "        #Uncomment the line below if you want to use adaptive histogram normalisation\n",
    "        #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5))\n",