natanielruiz
2017-09-14 93855b2faf8b795d0058c217ee980d435f23227d
code/train.py
@@ -48,6 +48,7 @@
          default=0.001, type=float)
    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
          default=1, type=int)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
    args = parser.parse_args()
    return args
@@ -124,8 +125,19 @@
    transforms.RandomCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
                                transformations)
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
@@ -239,10 +251,14 @@
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            loss_yaw *= 0.35
            # Finetuning loss
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            for idx in xrange(args.iter_ref+1):
                loss_angles = reg_criterion(angles[idx], label_angles.float())
            for idx in xrange(1,len(angles)):
                label_angles_residuals = label_angles.float() - angles[0]
                label_angles_residuals = label_angles_residuals.detach()
                loss_angles = reg_criterion(angles[idx], label_angles_residuals)
                loss_seq.append(loss_angles)
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]