natanielruiz
2017-09-14 93855b2faf8b795d0058c217ee980d435f23227d
code/train_preangles.py
@@ -46,6 +46,8 @@
    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
          default=0.001, type=float)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
    args = parser.parse_args()
    return args
@@ -111,7 +113,7 @@
    # ResNet101 with 3 outputs
    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
    # ResNet50
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
    # ResNet18
    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
@@ -122,8 +124,20 @@
    transforms.RandomCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
                                transformations)
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
@@ -183,6 +197,8 @@
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            loss_yaw *= 0.35
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]