| | |
| | | parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) |
| | | parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, |
| | | transformations) |
| | | |
| | | if args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'BIWI': |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | | print 'Error: not a valid dataset name' |
| | | sys.exit() |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | shuffle=True, |
| | |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_yaw *= 0.35 |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |