natanielruiz
2017-09-21 9a02f63f4d5692399a95cb889e8f7629a165c28e
code/batch_testing.py
@@ -115,22 +115,27 @@
        l1loss = torch.nn.L1Loss(size_average=False)
        for i, (images, labels, name) in enumerate(test_loader):
        for i, (images, labels, cont_labels, name) in enumerate(test_loader):
            images = Variable(images).cuda(gpu)
            total += labels.size(0)
            label_yaw = labels[:,0].float()
            label_pitch = labels[:,1].float()
            label_roll = labels[:,2].float()
            total += cont_labels.size(0)
            label_yaw = cont_labels[:,0].float()
            label_pitch = cont_labels[:,1].float()
            label_roll = cont_labels[:,2].float()
            pre_yaw, pre_pitch, pre_roll, angles = model(images)
            yaw = angles[args.iter_ref-1][:,0].cpu().data
            pitch = angles[args.iter_ref-1][:,1].cpu().data
            roll = angles[args.iter_ref-1][:,2].cpu().data
            yaw = angles[0][:,0].cpu().data * 3 - 99
            pitch = angles[0][:,1].cpu().data * 3 - 99
            roll = angles[0][:,2].cpu().data * 3 - 99
            for idx in xrange(1,args.iter_ref+1):
                yaw += angles[idx][:,0].cpu().data
                pitch += angles[idx][:,1].cpu().data
                roll += angles[idx][:,2].cpu().data
            # Mean absolute error
            yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
            pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
            roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
            yaw_error += torch.sum(torch.abs(yaw - label_yaw))
            pitch_error += torch.sum(torch.abs(pitch - label_pitch))
            roll_error += torch.sum(torch.abs(roll - label_roll))
            if args.save_viz:
                name = name[0]
                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))