| | |
| | | import cv2 |
| | | from torch.utils.data.dataset import Dataset |
| | | import os |
| | | from PIL import Image |
| | | from PIL import Image, ImageFilter |
| | | |
| | | import utils |
| | | |
| | | def stack_grayscale_tensor(tensor): |
| | | tensor = torch.cat([tensor, tensor, tensor], 0) |
| | | return tensor |
| | | |
| | | class Pose_300W_LP(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') |
| | | |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | label = torch.FloatTensor(pose) |
| | | # Crop the face |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | | x_min = min(pt2d[0,:]) |
| | | y_min = min(pt2d[1,:]) |
| | | x_max = max(pt2d[0,:]) |
| | | y_max = max(pt2d[1,:]) |
| | | |
| | | # k = 0.35 was being used beforehand |
| | | # k = 0.2 to 0.40 |
| | | k = np.random.random_sample() * 0.2 + 0.2 |
| | | x_min -= 0.6 * k * abs(x_max - x_min) |
| | | y_min -= 2 * k * abs(y_max - y_min) |
| | | x_max += 0.6 * k * abs(x_max - x_min) |
| | | y_max += 0.6 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(mat_path) |
| | | # And convert to degrees. |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | |
| | | # Flip? |
| | | rnd = np.random.random_sample() |
| | | if rnd < 0.5: |
| | | yaw = -yaw |
| | | roll = -roll |
| | | img = img.transpose(Image.FLIP_LEFT_RIGHT) |
| | | |
| | | # Blur? |
| | | rnd = np.random.random_sample() |
| | | if rnd < 0.05: |
| | | img = img.filter(ImageFilter.BLUR) |
| | | |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 |
| | | |
| | | # Get shape |
| | | shape = np.load(shape_path) |
| | | |
| | | labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, label, self.X_train[index] |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 122,450 |
| | | return self.length |
| | | |
| | | class AFLW2000(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | label = torch.FloatTensor(pose) |
| | | # Crop the face |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | | x_min = min(pt2d[0,:]) |
| | | y_min = min(pt2d[1,:]) |
| | | x_max = max(pt2d[0,:]) |
| | | y_max = max(pt2d[1,:]) |
| | | |
| | | k = 0.15 |
| | | x_min -= 0.6 * k * abs(x_max - x_min) |
| | | y_min -= 2 * k * abs(y_max - y_min) |
| | | x_max += 0.6 * k * abs(x_max - x_min) |
| | | y_max += 0.6 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(mat_path) |
| | | # And convert to degrees. |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, label, self.X_train[index] |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 2,000 |
| | | return self.length |
| | | |
| | | class Pose_300W_LP_binned(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | class AFLW_aug(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | img = img.convert(self.image_mode) |
| | | txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | # And convert to positive degrees. |
| | | pose = pose * 180 / np.pi + 90 |
| | | annot = open(txt_path, 'r') |
| | | line = annot.readline().split(' ') |
| | | pose = [float(line[1]), float(line[2]), float(line[3])] |
| | | # And convert to degrees. |
| | | yaw = pose[0] * 180 / np.pi |
| | | pitch = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Something weird with the roll in AFLW |
| | | roll *= -1 |
| | | |
| | | label = torch.FloatTensor(pose) |
| | | # Augment |
| | | # Flip? |
| | | rnd = np.random.random_sample() |
| | | if rnd < 0.5: |
| | | yaw = -yaw |
| | | roll = -roll |
| | | img = img.transpose(Image.FLIP_LEFT_RIGHT) |
| | | |
| | | # Blur? |
| | | # rnd = np.random.random_sample() |
| | | # if rnd < 0.05: |
| | | # img = img.filter(ImageFilter.BLUR) |
| | | # if rnd < 0.025: |
| | | # img = img.filter(ImageFilter.BLUR) |
| | | # |
| | | # rnd = np.random.random_sample() |
| | | # if rnd < 0.05: |
| | | # nb = np.random.randint(1,5) |
| | | # img = img.rotate(-nb) |
| | | # elif rnd > 0.95: |
| | | # nb = np.random.randint(1,5) |
| | | # img = img.rotate(nb) |
| | | |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, label, self.X_train[index] |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 122,450 |
| | | # train: 18,863 |
| | | # test: 1,966 |
| | | return self.length |
| | | |
| | | class AFLW(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | | self.annot_ext = annot_ext |
| | | |
| | | filename_list = get_list_from_filenames(filename_path) |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert(self.image_mode) |
| | | txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # We get the pose in radians |
| | | annot = open(txt_path, 'r') |
| | | line = annot.readline().split(' ') |
| | | pose = [float(line[1]), float(line[2]), float(line[3])] |
| | | # And convert to degrees. |
| | | yaw = pose[0] * 180 / np.pi |
| | | pitch = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Something weird with the roll in AFLW |
| | | roll *= -1 |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # train: 18,863 |
| | | # test: 1,966 |
| | | return self.length |
| | | |
| | | class AFW(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | | self.annot_ext = annot_ext |
| | | |
| | | filename_list = get_list_from_filenames(filename_path) |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | img_name = self.X_train[index].split('_')[0] |
| | | |
| | | img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext)) |
| | | img = img.convert(self.image_mode) |
| | | txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # We get the pose in degrees |
| | | annot = open(txt_path, 'r') |
| | | line = annot.readline().split(' ') |
| | | yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] |
| | | |
| | | # Crop the face |
| | | k = 0.32 |
| | | x1 = float(line[4]) |
| | | y1 = float(line[5]) |
| | | x2 = float(line[6]) |
| | | y2 = float(line[7]) |
| | | x1 -= 0.8 * k * abs(x2 - x1) |
| | | y1 -= 2 * k * abs(y2 - y1) |
| | | x2 += 0.8 * k * abs(x2 - x1) |
| | | y2 += 1 * k * abs(y2 - y1) |
| | | |
| | | img = img.crop((int(x1), int(y1), int(x2), int(y2))) |
| | | |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # Around 200 |
| | | return self.length |
| | | |
| | | class BIWI(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | | self.annot_ext = annot_ext |
| | | |
| | | filename_list = get_list_from_filenames(filename_path) |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext)) |
| | | img = img.convert(self.image_mode) |
| | | pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext) |
| | | |
| | | y_train_list = self.y_train[index].split('/') |
| | | bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext) |
| | | |
| | | # Load bounding box |
| | | bbox = open(bbox_path, 'r') |
| | | line = bbox.readline().split(' ') |
| | | if len(line) < 4: |
| | | x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1] |
| | | else: |
| | | x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])] |
| | | bbox.close() |
| | | |
| | | # Load pose in degrees |
| | | pose_annot = open(pose_path, 'r') |
| | | R = [] |
| | | for line in pose_annot: |
| | | line = line.strip('\n').split(' ') |
| | | l = [] |
| | | if line[0] != '': |
| | | for nb in line: |
| | | if nb == '': |
| | | continue |
| | | l.append(float(nb)) |
| | | R.append(l) |
| | | |
| | | R = np.array(R) |
| | | T = R[3,:] |
| | | R = R[:3,:] |
| | | pose_annot.close() |
| | | |
| | | roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi |
| | | yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi |
| | | pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi |
| | | |
| | | # Loosely crop face |
| | | k = 0.35 |
| | | x_min -= 0.6 * k * abs(x_max - x_min) |
| | | y_min -= k * abs(y_max - y_min) |
| | | x_max += 0.6 * k * abs(x_max - x_min) |
| | | y_max += 0.6 * k * abs(y_max - y_min) |
| | | img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) |
| | | |
| | | # Flip? |
| | | # rnd = np.random.random_sample() |
| | | # if rnd < 0.5: |
| | | # yaw = -yaw |
| | | # roll = -roll |
| | | # img = img.transpose(Image.FLIP_LEFT_RIGHT) |
| | | |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 |
| | | |
| | | labels = torch.LongTensor(binned_pose) |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, labels, cont_labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 15,667 |
| | | return self.length |
| | | |
| | | |
| | | def get_list_from_filenames(file_path): |
| | | # input: relative path to .txt file with file names |
| | | # output: list of relative path names |