natanielruiz
2017-10-30 af51d0ecb51ad4d6c8ed086855bd3c411ebc4aa0
code/test_alexnet.py
@@ -39,6 +39,13 @@
    return args
def load_filtered_state_dict(model, snapshot):
    # By user apaszke from discuss.pytorch.org
    model_dict = model.state_dict()
    snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
    model_dict.update(snapshot)
    model.load_state_dict(model_dict)
if __name__ == '__main__':
    args = parse_args()
@@ -51,7 +58,7 @@
    print 'Loading snapshot.'
    # Load snapshot
    saved_state_dict = torch.load(snapshot_path)
    model.load_state_dict(saved_state_dict)
    load_filtered_state_dict(model, saved_state_dict)
    print 'Loading data.'
@@ -59,18 +66,20 @@
    transforms.CenterCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    if args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                transformations)
    if args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'Pose_300W_LP_random_ds':
        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW2000_ds':
        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
                                transformations)
        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'Pose_300W_LP':
        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW_aug':
        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else: