natanielruiz
2017-10-26 bf2f0bcfd1a7fbed462f65d44dd8589ab19ba715
code/hopenet.py
@@ -4,16 +4,6 @@
import math
import torch.nn.functional as F
def ycbcr_to_rgb(input):
  # input is mini-batch N x 3 x H x W of an YCbCr image
  output = Variable(input.data.new(*input.size()))
  output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4
  output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711
  output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765
  # output[output <= 0] = 0.
  # output[output > 1] = 1.
  return output
# CNN Model (2 conv layer)
class Simple_CNN(nn.Module):
    def __init__(self):
@@ -235,20 +225,11 @@
        roll = self.fc_roll(x)
        return yaw, pitch, roll
class Hopenet_SR(nn.Module):
class Hopenet_new(nn.Module):
    # This is just Hopenet with 3 output layers for yaw, pitch and roll.
    def __init__(self, block, layers, num_bins, upscale_factor):
    def __init__(self, block, layers, num_bins):
        self.inplanes = 64
        super(Hopenet, self).__init__()
        # Super resolution sub-network
        self.sr_relu = nn.ReLU()
        self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor)
        # Pose estimation sub-network
        super(Hopenet_new, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
@@ -264,9 +245,11 @@
        self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
        self.softmax = nn.Softmax()
        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
        self.fc_finetune_new = nn.Linear(512 * block.expansion + 256 * block.expansion + 3, 3)
        self.conv1x1 = nn.Conv2d(1024, 64, kernel_size = 1, stride = 1, bias=False)
        self.maxpool_interm = nn.MaxPool2d(kernel_size=5, stride=3, padding=1)
        self.upscale_factor = upscale_factor
        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
@@ -294,23 +277,7 @@
        return nn.Sequential(*layers)
    def forward(self, x):
        # Super-resolution sub-network
        y_channel = x[:,0,:,:]
        sr_y = self.sr_relu(self.sr_conv1(y_channel))
        sr_y = self.sr_relu(self.sr_conv2(sr_y))
        sr_y = self.sr_relu(self.sr_conv3(sr_y))
        sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y))
        x[:,0,:,:] = sr_y
        x_rgb = ycbcr_to_rgb(x)
        out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
        out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
        out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')
        # Pose estimation sub-network
        x = self.conv1(sr_output)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
@@ -318,6 +285,11 @@
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x_interm = self.conv1x1(x)
        x_interm = self.relu(x_interm)
        x_interm = self.maxpool_interm(x_interm)
        x_interm = x_interm.view(x_interm.size(0), -1)
        x = self.layer4(x)
        x = self.avgpool(x)
@@ -327,16 +299,18 @@
        pre_roll = self.fc_roll(x)
        yaw = self.softmax(pre_yaw)
        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99
        pitch = self.softmax(pre_pitch)
        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99
        roll = self.softmax(pre_roll)
        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99
        yaw = yaw.view(yaw.size(0), 1)
        pitch = pitch.view(pitch.size(0), 1)
        roll = roll.view(roll.size(0), 1)
        angles = []
        preangles = torch.cat([yaw, pitch, roll], 1)
        angles.append(preangles)
        return pre_yaw, pre_pitch, pre_roll, angles, sr_output
        # angles predicts the residual
        residuals = self.fc_finetune_new(torch.cat((preangles, x_interm, x), 1))
        final_angles = preangles + residuals
        return pre_yaw, pre_pitch, pre_roll, preangles, final_angles