| | |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | |
| | | import os |
| | | import argparse |
| | | |
| | | from datasets import AFLW2000 |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | batch_size = 1 |
| | | gpu = args.gpu_id |
| | | snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') |
| | | snapshot_path = args.snapshot |
| | | |
| | | model = hopenet.Simple_CNN() |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()]) |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.CenterCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | pose_dataset = AFLW2000(args.data_dir, args.filename_list, |
| | | if args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, |
| | | transformations) |
| | | elif args.dataset == 'BIWI': |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | | print 'Error: not a valid dataset name' |
| | | sys.exit() |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | error = .0 |
| | | total = 0 |
| | | for i, (images, labels, path) in enumerate(test_loader): |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | labels = Variable(labels).cuda(gpu) |
| | | outputs = model(images) |
| | | _, predicted = torch.max(outputs.data, 1) |
| | | total += labels.size(0) |
| | | # TODO: There are more efficient ways. |
| | | for idx in xrange(len(outputs)): |
| | | error += utils.mse_loss(outputs[idx], labels[idx]) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | yaw = angles[args.iter_ref][:,0].cpu().data |
| | | pitch = angles[args.iter_ref][:,1].cpu().data |
| | | roll = angles[args.iter_ref][:,2].cpu().data |
| | | |
| | | print('Test MSE error of the model on the ' + str(total) + |
| | | ' test images: %.4f' % (error / total)) |
| | | # Mean absolute error |
| | | print yaw.numpy(), label_yaw.numpy() |
| | | yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll - label_roll) * 3) |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | # Binned accuracy |
| | | # for idx in xrange(len(yaw_correct)): |
| | | # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total |