natanielruiz
2017-09-14 dd62d6fa4a85f18a29de009a972f5599b19ec946
code/test.py
@@ -5,6 +5,8 @@
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.backends.cudnn as cudnn
import torchvision
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
@@ -12,7 +14,7 @@
import os
import argparse
from datasets import AFLW2000
import datasets
import hopenet
import utils
@@ -25,10 +27,14 @@
          default='', type=str)
    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
          default='', type=str)
    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
    parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.',
          default='', type=str)
    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
          default=1, type=int)
    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
          default=False, type=bool)
    parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int)
    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str)
    args = parser.parse_args()
@@ -38,11 +44,15 @@
    args = parse_args()
    cudnn.enabled = True
    batch_size = 1
    gpu = args.gpu_id
    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
    snapshot_path = args.snapshot
    model = hopenet.Simple_CNN()
    # ResNet101 with 3 outputs.
    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
    # ResNet50
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
    # ResNet18
    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    print 'Loading snapshot.'
    # Load snapshot
@@ -51,12 +61,24 @@
    print 'Loading data.'
    transformations = transforms.Compose([transforms.Scale(302),transforms.CenterCrop(302),transforms.ToTensor()])
    transformations = transforms.Compose([transforms.Scale(224),
    transforms.CenterCrop(224), transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
    pose_dataset = AFLW2000(args.data_dir, args.filename_list,
    if args.dataset == 'AFLW2000':
        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                transformations)
    elif args.dataset == 'BIWI':
        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFLW':
        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        sys.exit()
    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
                                               batch_size=args.batch_size,
                                               num_workers=2)
    model.cuda(gpu)
@@ -65,18 +87,51 @@
    # Test the Model
    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
    error = .0
    total = 0
    for i, (images, labels, path) in enumerate(test_loader):
    n_margins = 20
    yaw_correct = np.zeros(n_margins)
    pitch_correct = np.zeros(n_margins)
    roll_correct = np.zeros(n_margins)
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
    yaw_error = .0
    pitch_error = .0
    roll_error = .0
    l1loss = torch.nn.L1Loss(size_average=False)
    for i, (images, labels, name) in enumerate(test_loader):
        images = Variable(images).cuda(gpu)
        labels = Variable(labels).cuda(gpu)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        # TODO: There are more efficient ways.
        for idx in xrange(len(outputs)):
            error += utils.mse_loss(outputs[idx], labels[idx])
        label_yaw = labels[:,0].float()
        label_pitch = labels[:,1].float()
        label_roll = labels[:,2].float()
        pre_yaw, pre_pitch, pre_roll, angles = model(images)
        yaw = angles[args.iter_ref][:,0].cpu().data
        pitch = angles[args.iter_ref][:,1].cpu().data
        roll = angles[args.iter_ref][:,2].cpu().data
    print('Test MSE error of the model on the ' + str(total) +
    ' test images: %.4f' % (error / total))
        # Mean absolute error
        print yaw.numpy(), label_yaw.numpy()
        yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
        pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
        roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
        # Save images with pose cube.
        # TODO: fix for larger batch size
        if args.save_viz:
            name = name[0]
            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
            utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99)
            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
    print('Test error in degrees of the model on the ' + str(total) +
    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
    pitch_error / total, roll_error / total))
    # Binned accuracy
    # for idx in xrange(len(yaw_correct)):
    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total