natanielruiz
2017-09-14 dd62d6fa4a85f18a29de009a972f5599b19ec946
code/train.py
@@ -46,6 +46,8 @@
    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
          default=0.001, type=float)
    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
          default=1, type=int)
    args = parser.parse_args()
    return args
@@ -111,7 +113,7 @@
    # ResNet101 with 3 outputs
    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
    # ResNet50
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
    # ResNet18
    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
@@ -177,14 +179,12 @@
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
            # Total loss
            loss_yaw += alpha * loss_reg_yaw
            loss_pitch += alpha * loss_reg_pitch
            loss_roll += alpha * loss_reg_roll
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
@@ -226,9 +226,9 @@
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
@@ -240,9 +240,11 @@
            loss_roll += alpha * loss_reg_roll
            # Finetuning loss
            loss_angles = reg_criterion(angles[0], label_angles.float())
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            for idx in xrange(args.iter_ref+1):
                loss_angles = reg_criterion(angles[idx], label_angles.float())
                loss_seq.append(loss_angles)
            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
@@ -255,11 +257,7 @@
                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
        if epoch % 1 == 0 and epoch < num_epochs_ft:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
    # Save the final Trained Model
    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')