natanielruiz
2017-09-14 dd62d6fa4a85f18a29de009a972f5599b19ec946
code/train_shape.py
@@ -116,7 +116,7 @@
    transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224),
                                          transforms.ToTensor()])
    pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list,
    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
                                transformations)
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
@@ -128,13 +128,12 @@
    reg_criterion = nn.MSELoss().cuda(gpu)
    # Regression loss coefficient
    alpha = 0.1
    lsm = nn.Softmax()
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr}],
                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
                                  lr = args.lr)
    print 'Ready to train network.'