| | |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--finetune', dest='finetune', help='Boolean: finetune or from Imagenet pretrain.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Path to finetune snapshot.', |
| | | default='', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | |
| | | if args.finetune: |
| | | model.load_state_dict(torch.load(args.snapshot)) |
| | | else: |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor()]) |
| | | |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss().cuda() |
| | | reg_criterion = nn.MSELoss().cuda() |
| | | criterion = nn.CrossEntropyLoss().cuda(gpu) |
| | | reg_criterion = nn.MSELoss().cuda(gpu) |
| | | # Regression loss coefficient |
| | | alpha = 0.01 |
| | | alpha = 0.1 |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | # lr = args.lr, momentum = 0.9) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | |
| | |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | if epoch == 0: |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_AFW_iter_'+ str(i+1) + '.pkl') |
| | | 'output/snapshots/resnet50_AFLW_finetuned_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_AFW_epoch_'+ str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet50_AFLW_finetuned_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_AFLW_epoch' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_AFLW_finetuned_epoch_' + str(epoch+1) + '.pkl') |