hyhmrright
2019-05-31 e65c915e5bdbcca56b37aa13bcff4911beffbe37
code/datasets.py
@@ -1,17 +1,84 @@
import numpy as np
import torch
import cv2
from torch.utils.data.dataset import Dataset
import os
from PIL import Image
import numpy as np
import cv2
import pandas as pd
import torch
from torch.utils.data.dataset import Dataset
from torchvision import transforms
from PIL import Image, ImageFilter
import utils
def stack_grayscale_tensor(tensor):
    tensor = torch.cat([tensor, tensor, tensor], 0)
    return tensor
def get_list_from_filenames(file_path):
    # input:    relative path to .txt file with file names
    # output:   list of relative path names
    with open(file_path) as f:
        lines = f.read().splitlines()
    return lines
class Synhead(Dataset):
    def __init__(self, data_dir, csv_path, transform, test=False):
        column_names = ['path', 'bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']
        tmp_df = pd.read_csv(csv_path, sep=',', names=column_names, index_col=False, encoding="utf-8-sig")
        self.data_dir = data_dir
        self.transform = transform
        self.X_train = tmp_df['path']
        self.y_train = tmp_df[['bbox_x_min', 'bbox_y_min', 'bbox_x_max', 'bbox_y_max', 'yaw', 'pitch', 'roll']]
        self.length = len(tmp_df)
        self.test = test
    def __getitem__(self, index):
        path = os.path.join(self.data_dir, self.X_train.iloc[index]).strip('.jpg') + '.png'
        img = Image.open(path)
        img = img.convert('RGB')
        x_min, y_min, x_max, y_max, yaw, pitch, roll = self.y_train.iloc[index]
        x_min = float(x_min); x_max = float(x_max)
        y_min = float(y_min); y_max = float(y_max)
        yaw = -float(yaw); pitch = float(pitch); roll = float(roll)
        # k = 0.2 to 0.40
        k = np.random.random_sample() * 0.2 + 0.2
        x_min -= 0.6 * k * abs(x_max - x_min)
        y_min -= 2 * k * abs(y_max - y_min)
        x_max += 0.6 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        width, height = img.size
        # Crop the face
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        # Flip?
        rnd = np.random.random_sample()
        if rnd < 0.5:
            yaw = -yaw
            roll = -roll
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
        # Blur?
        rnd = np.random.random_sample()
        if rnd < 0.05:
            img = img.filter(ImageFilter.BLUR)
        # Bin values
        bins = np.array(range(-99, 102, 3))
        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
        labels = torch.LongTensor(binned_pose)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        return self.length
class Pose_300W_LP(Dataset):
    # Head pose from 300W-LP dataset
    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
        self.data_dir = data_dir
        self.transform = transform
@@ -29,20 +96,20 @@
        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
        img = img.convert(self.image_mode)
        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
        # Crop the face
        # Crop the face loosely
        pt2d = utils.get_pt2d_from_mat(mat_path)
        x_min = min(pt2d[0,:])
        y_min = min(pt2d[1,:])
        x_max = max(pt2d[0,:])
        y_max = max(pt2d[1,:])
        k = 0.15
        x_min -= k * abs(x_max - x_min)
        y_min -= 4 * k * abs(y_max - y_min)
        x_max += k * abs(x_max - x_min)
        y_max += 0.4 * k * abs(y_max - y_min)
        # k = 0.2 to 0.40
        k = np.random.random_sample() * 0.2 + 0.2
        x_min -= 0.6 * k * abs(x_max - x_min)
        y_min -= 2 * k * abs(y_max - y_min)
        x_max += 0.6 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        # We get the pose in radians
@@ -51,19 +118,106 @@
        pitch = pose[0] * 180 / np.pi
        yaw = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        # Flip?
        rnd = np.random.random_sample()
        if rnd < 0.5:
            yaw = -yaw
            roll = -roll
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
        # Blur?
        rnd = np.random.random_sample()
        if rnd < 0.05:
            img = img.filter(ImageFilter.BLUR)
        # Bin values
        bins = np.array(range(-99, 102, 3))
        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
        # Get shape
        shape = np.load(shape_path)
        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
        # Get target tensors
        labels = binned_pose
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, self.X_train[index]
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # 122,450
        return self.length
class Pose_300W_LP_random_ds(Dataset):
    # 300W-LP dataset with random downsampling
    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
        self.data_dir = data_dir
        self.transform = transform
        self.img_ext = img_ext
        self.annot_ext = annot_ext
        filename_list = get_list_from_filenames(filename_path)
        self.X_train = filename_list
        self.y_train = filename_list
        self.image_mode = image_mode
        self.length = len(filename_list)
    def __getitem__(self, index):
        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
        img = img.convert(self.image_mode)
        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
        # Crop the face loosely
        pt2d = utils.get_pt2d_from_mat(mat_path)
        x_min = min(pt2d[0,:])
        y_min = min(pt2d[1,:])
        x_max = max(pt2d[0,:])
        y_max = max(pt2d[1,:])
        # k = 0.2 to 0.40
        k = np.random.random_sample() * 0.2 + 0.2
        x_min -= 0.6 * k * abs(x_max - x_min)
        y_min -= 2 * k * abs(y_max - y_min)
        x_max += 0.6 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        # We get the pose in radians
        pose = utils.get_ypr_from_mat(mat_path)
        pitch = pose[0] * 180 / np.pi
        yaw = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        ds = 1 + np.random.randint(0,4) * 5
        original_size = img.size
        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
        # Flip?
        rnd = np.random.random_sample()
        if rnd < 0.5:
            yaw = -yaw
            roll = -roll
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
        # Blur?
        rnd = np.random.random_sample()
        if rnd < 0.05:
            img = img.filter(ImageFilter.BLUR)
        # Bin values
        bins = np.array(range(-99, 102, 3))
        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
        # Get target tensors
        labels = binned_pose
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # 122,450
@@ -88,18 +242,19 @@
        img = img.convert(self.image_mode)
        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
        # Crop the face
        # Crop the face loosely
        pt2d = utils.get_pt2d_from_mat(mat_path)
        x_min = min(pt2d[0,:])
        y_min = min(pt2d[1,:])
        x_max = max(pt2d[0,:])
        y_max = max(pt2d[1,:])
        k = 0.15
        x_min -= k * abs(x_max - x_min)
        y_min -= 4 * k * abs(y_max - y_min)
        x_max += k * abs(x_max - x_min)
        y_max += 0.4 * k * abs(y_max - y_min)
        k = 0.20
        x_min -= 2 * k * abs(x_max - x_min)
        y_min -= 2 * k * abs(y_max - y_min)
        x_max += 2 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        # We get the pose in radians
@@ -111,14 +266,128 @@
        # Bin values
        bins = np.array(range(-99, 102, 3))
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, self.X_train[index]
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # 2,000
        return self.length
class AFLW2000_ds(Dataset):
    # AFLW2000 dataset with fixed downsampling
    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
        self.data_dir = data_dir
        self.transform = transform
        self.img_ext = img_ext
        self.annot_ext = annot_ext
        filename_list = get_list_from_filenames(filename_path)
        self.X_train = filename_list
        self.y_train = filename_list
        self.image_mode = image_mode
        self.length = len(filename_list)
    def __getitem__(self, index):
        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
        img = img.convert(self.image_mode)
        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
        # Crop the face loosely
        pt2d = utils.get_pt2d_from_mat(mat_path)
        x_min = min(pt2d[0,:])
        y_min = min(pt2d[1,:])
        x_max = max(pt2d[0,:])
        y_max = max(pt2d[1,:])
        k = 0.20
        x_min -= 2 * k * abs(x_max - x_min)
        y_min -= 2 * k * abs(y_max - y_min)
        x_max += 2 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        ds = 3  # downsampling factor
        original_size = img.size
        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
        # We get the pose in radians
        pose = utils.get_ypr_from_mat(mat_path)
        # And convert to degrees.
        pitch = pose[0] * 180 / np.pi
        yaw = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        # Bin values
        bins = np.array(range(-99, 102, 3))
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # 2,000
        return self.length
class AFLW_aug(Dataset):
    # AFLW dataset with flipping
    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
        self.data_dir = data_dir
        self.transform = transform
        self.img_ext = img_ext
        self.annot_ext = annot_ext
        filename_list = get_list_from_filenames(filename_path)
        self.X_train = filename_list
        self.y_train = filename_list
        self.image_mode = image_mode
        self.length = len(filename_list)
    def __getitem__(self, index):
        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
        img = img.convert(self.image_mode)
        txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
        # We get the pose in radians
        annot = open(txt_path, 'r')
        line = annot.readline().split(' ')
        pose = [float(line[1]), float(line[2]), float(line[3])]
        # And convert to degrees.
        yaw = pose[0] * 180 / np.pi
        pitch = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        # Fix the roll in AFLW
        roll *= -1
        # Augment
        # Flip?
        rnd = np.random.random_sample()
        if rnd < 0.5:
            yaw = -yaw
            roll = -roll
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
        # Bin values
        bins = np.array(range(-99, 102, 3))
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # train: 18,863
        # test: 1,966
        return self.length
class AFLW(Dataset):
@@ -148,17 +417,17 @@
        yaw = pose[0] * 180 / np.pi
        pitch = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        # Something weird with the roll in AFLW
        if yaw < 0:
            roll *= -1
        # Fix the roll in AFLW
        roll *= -1
        # Bin values
        bins = np.array(range(-99, 102, 3))
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, self.X_train[index]
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # train: 18,863
@@ -192,32 +461,108 @@
        line = annot.readline().split(' ')
        yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])]
        # Crop the face
        margin = 40
        x_min = float(line[4]) - margin
        y_min = float(line[5]) - margin
        x_max = float(line[6]) + margin
        y_max = float(line[7]) + margin
        # Crop the face loosely
        k = 0.32
        x1 = float(line[4])
        y1 = float(line[5])
        x2 = float(line[6])
        y2 = float(line[7])
        x1 -= 0.8 * k * abs(x2 - x1)
        y1 -= 2 * k * abs(y2 - y1)
        x2 += 0.8 * k * abs(x2 - x1)
        y2 += 1 * k * abs(y2 - y1)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        img = img.crop((int(x1), int(y1), int(x2), int(y2)))
        # Bin values
        bins = np.array(range(-99, 102, 3))
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, self.X_train[index]
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # Around 200
        return self.length
class BIWI(Dataset):
    def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'):
        self.data_dir = data_dir
        self.transform = transform
        self.img_ext = img_ext
        self.annot_ext = annot_ext
def get_list_from_filenames(file_path):
    # input:    relative path to .txt file with file names
    # output:   list of relative path names
    with open(file_path) as f:
        lines = f.read().splitlines()
    return lines
        filename_list = get_list_from_filenames(filename_path)
        self.X_train = filename_list
        self.y_train = filename_list
        self.image_mode = image_mode
        self.length = len(filename_list)
    def __getitem__(self, index):
        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext))
        img = img.convert(self.image_mode)
        pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext)
        y_train_list = self.y_train[index].split('/')
        bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext)
        # Load bounding box
        bbox = open(bbox_path, 'r')
        line = bbox.readline().split(' ')
        if len(line) < 4:
            x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1]
        else:
            x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])]
        bbox.close()
        # Load pose in degrees
        pose_annot = open(pose_path, 'r')
        R = []
        for line in pose_annot:
            line = line.strip('\n').split(' ')
            l = []
            if line[0] != '':
                for nb in line:
                    if nb == '':
                        continue
                    l.append(float(nb))
                R.append(l)
        R = np.array(R)
        T = R[3,:]
        R = R[:3,:]
        pose_annot.close()
        R = np.transpose(R)
        roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
        yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
        pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
        # Loosely crop face
        k = 0.35
        x_min -= 0.6 * k * abs(x_max - x_min)
        y_min -= k * abs(y_max - y_min)
        x_max += 0.6 * k * abs(x_max - x_min)
        y_max += 0.6 * k * abs(y_max - y_min)
        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
        # Bin values
        bins = np.array(range(-99, 102, 3))
        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
        labels = torch.LongTensor(binned_pose)
        cont_labels = torch.FloatTensor([yaw, pitch, roll])
        if self.transform is not None:
            img = self.transform(img)
        return img, labels, cont_labels, self.X_train[index]
    def __len__(self):
        # 15,667
        return self.length