| | |
| | | import math |
| | | import torch.nn.functional as F |
| | | |
| | | def ycbcr_to_rgb(input): |
| | | # input is mini-batch N x 3 x H x W of an YCbCr image |
| | | output = Variable(input.data.new(*input.size())) |
| | | output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4 |
| | | output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711 |
| | | output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765 |
| | | # output[output <= 0] = 0. |
| | | # output[output > 1] = 1. |
| | | return output |
| | | |
| | | # CNN Model (2 conv layer) |
| | | class Simple_CNN(nn.Module): |
| | | def __init__(self): |
| | | super(Simple_CNN, self).__init__() |
| | | self.layer1 = nn.Sequential( |
| | | nn.Conv2d(3, 64, kernel_size=3, padding=0), |
| | | nn.BatchNorm2d(64), |
| | | nn.ReLU(), |
| | | nn.MaxPool2d(2)) |
| | | self.layer2 = nn.Sequential( |
| | | nn.Conv2d(64, 128, kernel_size=3, padding=0), |
| | | nn.BatchNorm2d(128), |
| | | nn.ReLU(), |
| | | nn.MaxPool2d(2)) |
| | | self.layer3 = nn.Sequential( |
| | | nn.Conv2d(128, 256, kernel_size=3, padding=0), |
| | | nn.BatchNorm2d(256), |
| | | nn.ReLU(), |
| | | nn.MaxPool2d(2)) |
| | | self.layer4 = nn.Sequential( |
| | | nn.Conv2d(256, 512, kernel_size=3, padding=0), |
| | | nn.BatchNorm2d(512), |
| | | nn.ReLU(), |
| | | nn.MaxPool2d(2)) |
| | | self.fc = nn.Linear(17*17*512, 3) |
| | | |
| | | def forward(self, x): |
| | | out = self.layer1(x) |
| | | out = self.layer2(out) |
| | | out = self.layer3(out) |
| | | out = self.layer4(out) |
| | | out = out.view(out.size(0), -1) |
| | | out = self.fc(out) |
| | | return out |
| | | |
| | | class Hopenet(nn.Module): |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | | def __init__(self, block, layers, num_bins, iter_ref): |
| | | # Hopenet with 3 output layers for yaw, pitch and roll |
| | | # Predicts Euler angles by binning and regression with the expected value |
| | | def __init__(self, block, layers, num_bins): |
| | | self.inplanes = 64 |
| | | super(Hopenet, self).__init__() |
| | | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| | |
| | | self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_roll = nn.Linear(512 * block.expansion, num_bins) |
| | | |
| | | self.softmax = nn.Softmax() |
| | | # Vestigial layer from previous experiments |
| | | self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) |
| | | |
| | | self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() |
| | | |
| | | self.iter_ref = iter_ref |
| | | |
| | | for m in self.modules(): |
| | | if isinstance(m, nn.Conv2d): |
| | |
| | | pre_pitch = self.fc_pitch(x) |
| | | pre_roll = self.fc_roll(x) |
| | | |
| | | yaw = self.softmax(pre_yaw) |
| | | yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) |
| | | pitch = self.softmax(pre_pitch) |
| | | pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) |
| | | roll = self.softmax(pre_roll) |
| | | roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) |
| | | yaw = yaw.view(yaw.size(0), 1) |
| | | pitch = pitch.view(pitch.size(0), 1) |
| | | roll = roll.view(roll.size(0), 1) |
| | | angles = [] |
| | | preangles = torch.cat([yaw, pitch, roll], 1) |
| | | angles.append(preangles) |
| | | |
| | | # angles predicts the residual |
| | | for idx in xrange(self.iter_ref): |
| | | angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) |
| | | |
| | | return pre_yaw, pre_pitch, pre_roll, angles |
| | | return pre_yaw, pre_pitch, pre_roll |
| | | |
| | | class ResNet(nn.Module): |
| | | |
| | | # ResNet for regression of 3 Euler angles. |
| | | def __init__(self, block, layers, num_classes=1000): |
| | | self.inplanes = 64 |
| | | super(ResNet, self).__init__() |
| | |
| | | x = self.avgpool(x) |
| | | x = x.view(x.size(0), -1) |
| | | x = self.fc_angles(x) |
| | | |
| | | return x |
| | | |
| | | class AlexNet(nn.Module): |
| | | |
| | | # AlexNet laid out as a Hopenet - classify Euler angles in bins and |
| | | # regress the expected value. |
| | | def __init__(self, num_bins): |
| | | super(AlexNet, self).__init__() |
| | | self.features = nn.Sequential( |
| | |
| | | pitch = self.fc_pitch(x) |
| | | roll = self.fc_roll(x) |
| | | return yaw, pitch, roll |
| | | |
| | | class Hopenet_SR(nn.Module): |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | | def __init__(self, block, layers, num_bins, upscale_factor): |
| | | self.inplanes = 64 |
| | | super(Hopenet, self).__init__() |
| | | # Super resolution sub-network |
| | | self.sr_relu = nn.ReLU() |
| | | self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) |
| | | self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) |
| | | self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) |
| | | self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) |
| | | self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor) |
| | | |
| | | # Pose estimation sub-network |
| | | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| | | bias=False) |
| | | self.bn1 = nn.BatchNorm2d(64) |
| | | self.relu = nn.ReLU(inplace=True) |
| | | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| | | self.layer1 = self._make_layer(block, 64, layers[0]) |
| | | self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
| | | self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
| | | self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
| | | self.avgpool = nn.AvgPool2d(7) |
| | | self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_roll = nn.Linear(512 * block.expansion, num_bins) |
| | | |
| | | self.softmax = nn.Softmax() |
| | | self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() |
| | | |
| | | self.upscale_factor = upscale_factor |
| | | |
| | | for m in self.modules(): |
| | | if isinstance(m, nn.Conv2d): |
| | | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
| | | m.weight.data.normal_(0, math.sqrt(2. / n)) |
| | | elif isinstance(m, nn.BatchNorm2d): |
| | | m.weight.data.fill_(1) |
| | | m.bias.data.zero_() |
| | | |
| | | def _make_layer(self, block, planes, blocks, stride=1): |
| | | downsample = None |
| | | if stride != 1 or self.inplanes != planes * block.expansion: |
| | | downsample = nn.Sequential( |
| | | nn.Conv2d(self.inplanes, planes * block.expansion, |
| | | kernel_size=1, stride=stride, bias=False), |
| | | nn.BatchNorm2d(planes * block.expansion), |
| | | ) |
| | | |
| | | layers = [] |
| | | layers.append(block(self.inplanes, planes, stride, downsample)) |
| | | self.inplanes = planes * block.expansion |
| | | for i in range(1, blocks): |
| | | layers.append(block(self.inplanes, planes)) |
| | | |
| | | return nn.Sequential(*layers) |
| | | |
| | | def forward(self, x): |
| | | # Super-resolution sub-network |
| | | y_channel = x[:,0,:,:] |
| | | |
| | | sr_y = self.sr_relu(self.sr_conv1(y_channel)) |
| | | sr_y = self.sr_relu(self.sr_conv2(sr_y)) |
| | | sr_y = self.sr_relu(self.sr_conv3(sr_y)) |
| | | sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y)) |
| | | |
| | | x[:,0,:,:] = sr_y |
| | | x_rgb = ycbcr_to_rgb(x) |
| | | |
| | | out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) |
| | | out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) |
| | | out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB') |
| | | |
| | | # Pose estimation sub-network |
| | | x = self.conv1(sr_output) |
| | | x = self.bn1(x) |
| | | x = self.relu(x) |
| | | x = self.maxpool(x) |
| | | |
| | | x = self.layer1(x) |
| | | x = self.layer2(x) |
| | | x = self.layer3(x) |
| | | x = self.layer4(x) |
| | | |
| | | x = self.avgpool(x) |
| | | x = x.view(x.size(0), -1) |
| | | pre_yaw = self.fc_yaw(x) |
| | | pre_pitch = self.fc_pitch(x) |
| | | pre_roll = self.fc_roll(x) |
| | | |
| | | yaw = self.softmax(pre_yaw) |
| | | yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) |
| | | pitch = self.softmax(pre_pitch) |
| | | pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) |
| | | roll = self.softmax(pre_roll) |
| | | roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) |
| | | yaw = yaw.view(yaw.size(0), 1) |
| | | pitch = pitch.view(pitch.size(0), 1) |
| | | roll = roll.view(roll.size(0), 1) |
| | | angles = [] |
| | | preangles = torch.cat([yaw, pitch, roll], 1) |
| | | angles.append(preangles) |
| | | |
| | | return pre_yaw, pre_pitch, pre_roll, angles, sr_output |
| | | |
| | | class Hopenet_new(nn.Module): |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | | def __init__(self, block, layers, num_bins): |
| | | self.inplanes = 64 |
| | | super(Hopenet_new, self).__init__() |
| | | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| | | bias=False) |
| | | self.bn1 = nn.BatchNorm2d(64) |
| | | self.relu = nn.ReLU(inplace=True) |
| | | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| | | self.layer1 = self._make_layer(block, 64, layers[0]) |
| | | self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
| | | self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
| | | self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
| | | self.avgpool = nn.AvgPool2d(7) |
| | | self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_roll = nn.Linear(512 * block.expansion, num_bins) |
| | | |
| | | self.softmax = nn.Softmax() |
| | | self.fc_finetune_new = nn.Linear(512 * block.expansion + 256 * block.expansion + 3, 3) |
| | | self.conv1x1 = nn.Conv2d(1024, 64, kernel_size = 1, stride = 1, bias=False) |
| | | self.maxpool_interm = nn.MaxPool2d(kernel_size=5, stride=3, padding=1) |
| | | |
| | | self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() |
| | | |
| | | for m in self.modules(): |
| | | if isinstance(m, nn.Conv2d): |
| | | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
| | | m.weight.data.normal_(0, math.sqrt(2. / n)) |
| | | elif isinstance(m, nn.BatchNorm2d): |
| | | m.weight.data.fill_(1) |
| | | m.bias.data.zero_() |
| | | |
| | | def _make_layer(self, block, planes, blocks, stride=1): |
| | | downsample = None |
| | | if stride != 1 or self.inplanes != planes * block.expansion: |
| | | downsample = nn.Sequential( |
| | | nn.Conv2d(self.inplanes, planes * block.expansion, |
| | | kernel_size=1, stride=stride, bias=False), |
| | | nn.BatchNorm2d(planes * block.expansion), |
| | | ) |
| | | |
| | | layers = [] |
| | | layers.append(block(self.inplanes, planes, stride, downsample)) |
| | | self.inplanes = planes * block.expansion |
| | | for i in range(1, blocks): |
| | | layers.append(block(self.inplanes, planes)) |
| | | |
| | | return nn.Sequential(*layers) |
| | | |
| | | def forward(self, x): |
| | | x = self.conv1(x) |
| | | x = self.bn1(x) |
| | | x = self.relu(x) |
| | | x = self.maxpool(x) |
| | | |
| | | x = self.layer1(x) |
| | | x = self.layer2(x) |
| | | x = self.layer3(x) |
| | | x_interm = self.conv1x1(x) |
| | | x_interm = self.relu(x_interm) |
| | | x_interm = self.maxpool_interm(x_interm) |
| | | x_interm = x_interm.view(x_interm.size(0), -1) |
| | | |
| | | x = self.layer4(x) |
| | | |
| | | x = self.avgpool(x) |
| | | x = x.view(x.size(0), -1) |
| | | pre_yaw = self.fc_yaw(x) |
| | | pre_pitch = self.fc_pitch(x) |
| | | pre_roll = self.fc_roll(x) |
| | | |
| | | yaw = self.softmax(pre_yaw) |
| | | yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 |
| | | pitch = self.softmax(pre_pitch) |
| | | pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 |
| | | roll = self.softmax(pre_roll) |
| | | roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 |
| | | yaw = yaw.view(yaw.size(0), 1) |
| | | pitch = pitch.view(pitch.size(0), 1) |
| | | roll = roll.view(roll.size(0), 1) |
| | | preangles = torch.cat([yaw, pitch, roll], 1) |
| | | |
| | | # angles predicts the residual |
| | | residuals = self.fc_finetune_new(torch.cat((preangles, x_interm, x), 1)) |
| | | final_angles = preangles + residuals |
| | | |
| | | return pre_yaw, pre_pitch, pre_roll, preangles, final_angles |