hyhmrright
2019-05-31 e65c915e5bdbcca56b37aa13bcff4911beffbe37
code/train_alexnet.py
@@ -94,7 +94,7 @@
    model = hopenet.AlexNet(66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['alexnet']))
    print 'Loading data.'
    print('Loading data.')
    transformations = transforms.Compose([transforms.Scale(240),
    transforms.RandomCrop(224), transforms.ToTensor(),
@@ -115,7 +115,7 @@
    elif args.dataset == 'AFW':
        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
    else:
        print 'Error: not a valid dataset name'
        print('Error: not a valid dataset name')
        sys.exit()
    train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                               batch_size=batch_size,
@@ -129,12 +129,15 @@
    # Regression loss coefficient
    alpha = args.alpha
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                   lr = args.lr)
    print 'Ready to train network.'
    print('Ready to train network.')
    for epoch in range(num_epochs):
        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
            images = Variable(images).cuda(gpu)
@@ -150,17 +153,21 @@
            label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu)
            # Forward pass
            yaw, pitch, roll, angles = model(images)
            pre_yaw, pre_pitch, pre_roll = model(images)
            # Cross entropy loss
            loss_yaw = criterion(yaw, label_yaw)
            loss_pitch = criterion(pitch, label_pitch)
            loss_roll = criterion(roll, label_roll)
            loss_yaw = criterion(pre_yaw, label_yaw)
            loss_pitch = criterion(pre_pitch, label_pitch)
            loss_roll = criterion(pre_roll, label_roll)
            # MSE loss
            yaw_predicted = angles[:,0]
            pitch_predicted = angles[:,1]
            roll_predicted = angles[:,2]
            yaw_predicted = softmax(pre_yaw)
            pitch_predicted = softmax(pre_pitch)
            roll_predicted = softmax(pre_roll)
            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
@@ -172,17 +179,16 @@
            loss_roll += alpha * loss_reg_roll
            loss_seq = [loss_yaw, loss_pitch, loss_roll]
            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
            optimizer.zero_grad()
            grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))]
            torch.autograd.backward(loss_seq, grad_seq)
            optimizer.step()
            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                print('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs:
            print 'Taking snapshot...'
            print('Taking snapshot...')
            torch.save(model.state_dict(),
            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')