| | |
| | | import sys, os, argparse, time |
| | | |
| | | import numpy as np |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | |
| | | import torch.backends.cudnn as cudnn |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import datasets, hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | import time |
| | | |
| | | model_urls = { |
| | | 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', |
| | |
| | | parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.features[0]) |
| | | b.append(model.features[1]) |
| | | b.append(model.features[2]) |
| | | b = [model.features[0], model.features[1], model.features[2]] |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | if 'bn' in module_name: |
| | |
| | | yield param |
| | | |
| | | def get_fc_params(model): |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | b = [model.fc_yaw, model.fc_pitch, model.fc_roll] |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | for name, param in module.named_parameters(): |
| | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | |
| | | model = hopenet.AlexNet(66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['alexnet'])) |
| | | |
| | | print 'Loading data.' |
| | | print('Loading data.') |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(240), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | |
| | | |
| | | if args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Pose_300W_LP_random_ds': |
| | | pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'BIWI': |
| | |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | | print 'Error: not a valid dataset name' |
| | | print('Error: not a valid dataset name') |
| | | sys.exit() |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | |
| | | {'params': get_fc_params(model), 'lr': args.lr * 5}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | print 'First phase of training.' |
| | | print('Ready to train network.') |
| | | for epoch in range(num_epochs): |
| | | # start = time.time() |
| | | for i, (images, labels, cont_labels, name) in enumerate(train_loader): |
| | | # print i |
| | | # print 'start: ', time.time() - start |
| | | images = Variable(images).cuda(gpu) |
| | | |
| | | # Binned labels |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | |
| | | label_angles = Variable(cont_labels[:,:3]).cuda(gpu) |
| | | # Continuous labels |
| | | label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) |
| | | label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) |
| | | label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | # Forward pass |
| | | pre_yaw, pre_pitch, pre_roll = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(pre_yaw, label_yaw) |
| | | loss_pitch = criterion(pre_pitch, label_pitch) |
| | |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | # print 'end: ', time.time() - start |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | print('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | # if epoch == 0: |
| | | # torch.save(model.state_dict(), |
| | | # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs: |
| | | print 'Taking snapshot...' |
| | | print('Taking snapshot...') |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') |