| | |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) |
| | | parser.add_argument('--margin', dest='margin', help='Accuracy margin.', default=22.5, |
| | | type=float) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | |
| | | cudnn.enabled = True |
| | | gpu = args.gpu_id |
| | | snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') |
| | | snapshot_path = args.snapshot |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | yaw_correct = .0 |
| | | yaw_margin = args.margin |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | |
| | | label_pitch = labels[:,1].float() * 3 - 99 |
| | | label_roll = labels[:,2].float() * 3 - 99 |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | yaw = angles[0][:,0].cpu().data |
| | | pitch = angles[0][:,1].cpu().data |
| | | roll = angles[0][:,2].cpu().data |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | for idx in xrange(1,args.iter_ref+1): |
| | | yaw += angles[idx][:,0].cpu().data |
| | | pitch += angles[idx][:,1].cpu().data |
| | | roll += angles[idx][:,2].cpu().data |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = utils.softmax_temperature(yaw.data, 0.4) |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 0.8) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 0.8) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 |
| | | |
| | | yaw = yaw * 3 - 99 |
| | | pitch = pitch * 3 - 99 |
| | | roll = roll * 3 - 99 |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) |
| | | yaw_error += torch.sum(torch.abs(yaw - label_yaw)) |
| | | pitch_error += torch.sum(torch.abs(pitch - label_pitch)) |
| | | roll_error += torch.sum(torch.abs(roll - label_roll)) |
| | | |
| | | # Yaw accuracy |
| | | yaw_tensor_error = torch.abs(yaw_predicted - label_yaw).numpy() |
| | | yaw_tensor_error = torch.abs(yaw - label_yaw).numpy() |
| | | |
| | | yaw_margin = 22.5 |
| | | yaw_correct += np.where(yaw_tensor_error <= yaw_margin)[0].shape[0] |
| | | |
| | | if yaw_tensor_error[0] > yaw_margin: |
| | | print name[0] + ' ' + str(yaw_predicted[0]) + ' ' + str(label_yaw[0]) + ' ' + str(yaw_tensor_error[0]) |
| | | print name[0] + ' ' + str(yaw[0]) + ' ' + str(label_yaw[0]) + ' ' + str(yaw_tensor_error[0]) |
| | | |
| | | # Binned Accuracy |
| | | # for er in xrange(n_margins): |
| | |
| | | #print os.path.join('output/images', name + '.jpg') |
| | | #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 |
| | | #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) |
| | | utils.plot_pose_cube(cv2_img, yaw[0], pitch[0], roll[0]) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |