| | |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW_aug': |
| | | pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_fc_params(model), 'lr': args.lr * 2}], |
| | | {'params': get_fc_params(model), 'lr': args.lr * 5}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | print 'First phase of training.' |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | for i, (images, labels, cont_labels, name) in enumerate(train_loader): |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | |
| | | label_angles = Variable(cont_labels[:,:3].cuda(gpu)) |
| | | label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) |
| | | label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) |
| | | label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | |
| | | pitch_predicted = softmax(pre_pitch) |
| | | roll_predicted = softmax(pre_roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) |
| | | |
| | | # print yaw_predicted, label_yaw.float(), loss_reg_yaw |
| | | # Total loss |
| | |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | print 'Second phase of training (finetuning layer).' |
| | | for epoch in range(num_epochs_ft): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | label_angles = Variable(labels[:,:3].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(pre_yaw, label_yaw) |
| | | loss_pitch = criterion(pre_pitch, label_pitch) |
| | | loss_roll = criterion(pre_roll, label_roll) |
| | | |
| | | # MSE loss |
| | | yaw_predicted = softmax(pre_yaw) |
| | | pitch_predicted = softmax(pre_pitch) |
| | | roll_predicted = softmax(pre_roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | # Finetuning loss |
| | | loss_angles = reg_criterion(angles[0], label_angles.float()) |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' |
| | | %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) |
| | | # if epoch == 0: |
| | | # torch.save(model.state_dict(), |
| | | # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs_ft - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') |
| | | |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') |