natanielruiz
2017-09-14 ec99c6649af6bdbd3c836f20cdc81170e7045cc8
practice/.ipynb_checkpoints/load_AFLW-Copy1-checkpoint.ipynb
@@ -31,16 +31,24 @@
   "source": [
    "#Change this paths according to your directories\n",
    "images_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw/data/flickr/\"\n",
    "storing_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/\""
    "storing_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Done\n"
     ]
    }
   ],
   "source": [
    "#Image counter\n",
    "counter = 1\n",
@@ -92,17 +100,19 @@
    "        face_h = row[8]\n",
    "\n",
    "        #Error correction\n",
    "        if(face_x < 0): face_x = 0\n",
    "        if(face_y < 0): face_y = 0\n",
    "        if(face_w > image_w): \n",
    "            face_w = image_w\n",
    "            face_h = image_w\n",
    "        if(face_h > image_h): \n",
    "            face_h = image_h\n",
    "            face_w = image_h\n",
    "\n",
    "        k = 0.35\n",
    "        x_min = face_x - face_w * k * 0.6\n",
    "        x_max = face_x + face_w + face_w * k * 0.6\n",
    "        y_min = face_y - face_h * k * 2\n",
    "        y_max = face_y + face_h + face_h * k * 0.6\n",
    "        \n",
    "        x_min = int(max(0, x_min))\n",
    "        x_max = int(min(image_w, x_max))\n",
    "        y_min = int(max(0, y_min))\n",
    "        y_max = int(min(image_h, y_max))\n",
    "        \n",
    "        #Crop the face from the image\n",
    "        image_cropped = np.copy(image[face_y:face_y+face_h, face_x:face_x+face_w])\n",
    "        image_cropped = np.copy(image[y_min:y_max, x_min:x_max])\n",
    "        #Uncomment the lines below if you want to rescale the image to a particular size\n",
    "        to_size = 240\n",
    "        image_cropped = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA)\n",
@@ -134,6 +144,25 @@
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "test\n"
     ]
    }
   ],
   "source": [
    "print 'test'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true