| | |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | if args.batch_size == 1: |
| | | error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) |
| | | cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) |
| | | cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=2) |
| | | # utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], size=100) |
| | | utils.draw_axis(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], tdx = 200, tdy= 200, size=100) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |