File was renamed from code/train_resnet_bins_comb.py |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | reg_criterion = nn.MSELoss() |
| | | criterion = nn.CrossEntropyLoss().cuda() |
| | | reg_criterion = nn.MSELoss().cuda() |
| | | # Regression loss coefficient |
| | | alpha = 0.1 |
| | | lsm = nn.Softmax() |
| | | alpha = 0.01 |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr, momentum=0.9, weight_decay=5e-4) |
| | | # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | # lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | # loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | # torch.autograd.backward(loss_seq, grad_seq) |
| | | # optimizer.step() |
| | | |
| | | # MSE loss |
| | | yaw_predicted = F.softmax(yaw) |
| | |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # print yaw_predicted[0], label_yaw.data[0] |
| | | |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | model.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | |
| | | 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch' + str(epoch+1) + '.pkl') |