| | |
| | | default=16, type=int) |
| | | parser.add_argument('--lr', dest='lr', help='Base learning rate.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | |
| | | parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) |
| | | parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', |
| | | default='', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | return args |
| | |
| | | |
| | | # ResNet50 structure |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) |
| | | |
| | | print 'Loading data.' |
| | | if args.snapshot == '': |
| | | load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) |
| | | else: |
| | | saved_state_dict = torch.load(args.snapshot) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | print('Loading data.') |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(240), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Pose_300W_LP_random_ds': |
| | | pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'Synhead': |
| | | pose_dataset = datasets.Synhead(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'BIWI': |
| | |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | | print 'Error: not a valid dataset name' |
| | | print('Error: not a valid dataset name') |
| | | sys.exit() |
| | | |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | |
| | | {'params': get_fc_params(model), 'lr': args.lr * 5}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | print('Ready to train network.') |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, cont_labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | |
| | | label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) |
| | | |
| | | # Forward pass |
| | | yaw, pitch, roll, angles = model(images) |
| | | yaw, pitch, roll = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | grad_seq = [torch.ones(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | optimizer.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs: |
| | | print 'Taking snapshot...' |
| | | print('Taking snapshot...') |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') |