zhaoqingang
2025-03-04 370120fd4154ce6c5f69d16a4a343a016cf2e816
app/service/v2/chat.py
@@ -1,70 +1,434 @@
import asyncio
import io
import json
import fitz
from fastapi import HTTPException
from Log import logger
from app.config.agent_base_url import RG_CHAT_DIALOG
from app.config.agent_base_url import RG_CHAT_DIALOG, DF_CHAT_AGENT, DF_CHAT_PARAMETERS, RG_CHAT_SESSIONS, \
    DF_CHAT_WORKFLOW, DF_UPLOAD_FILE, RG_ORIGINAL_URL
from app.config.config import settings
from app.config.const import max_chunk_size
from app.models.v2.session_model import ChatSessionDao
from app.config.const import *
from app.models import DialogModel, ApiTokenModel, UserTokenModel
from app.models.v2.session_model import ChatSessionDao, ChatData
from app.service.v2.app_driver.chat_agent import ChatAgent
from app.service.v2.app_driver.chat_data import ChatBaseApply
from app.service.v2.app_driver.chat_dialog import ChatDialog
from app.service.v2.app_driver.chat_workflow import ChatWorkflow
from docx import Document
from dashscope import get_tokenizer  # dashscope版本 >= 1.14.0
async def service_chat_dialog(db, chat_id:str, question: str, session_id: str, user_id):
    token = "ragflow-YzMzE1NDRjYzMyZjExZWY5ZjkxMDI0Mm"
    url = settings.fwr_base_url+RG_CHAT_DIALOG.format(chat_id)
    chat = ChatDialog(token)
    request_data = {
        "question": question,
        "stream": True,
        "session_id": session_id
    }
    headers = {
        'Content-Type': 'application/json',
        'Authorization': f"Bearer {token}"
    }
async def update_session_log(db, session_id: str, message: dict, conversation_id: str):
    await ChatSessionDao(db).update_session_by_id(
        session_id=session_id,
        session=None,
        message=message,
        conversation_id=conversation_id
    )
async def add_session_log(db, session_id: str, question: str, chat_id: str, user_id, event_type: str,
                          conversation_id: str, agent_type):
    try:
        await ChatSessionDao(db).update_or_insert_by_id(
        session = await ChatSessionDao(db).update_or_insert_by_id(
            session_id=session_id,
            name=question[:255],
            agent_id=chat_id,
            agent_type=1,
            agent_type=agent_type,
            tenant_id=user_id,
            message={"role": "user", "content": question},
            conversation_id=session_id,
            event_type="message"
            conversation_id=conversation_id,
            event_type=event_type
        )
        return session
    except Exception as e:
        logger.error(e)
    return None
async def get_app_token(db, app_id):
    app_token = db.query(UserTokenModel).filter_by(id=app_id).first()
    if app_token:
        return app_token.access_token
    return ""
async def get_chat_token(db, app_id):
    app_token = db.query(ApiTokenModel).filter_by(app_id=app_id).first()
    if app_token:
        return app_token.token
    return ""
async def add_chat_token(db, data):
    try:
        message = {"role": "assistant","answer":"", "reference": {}}
        async for ans in chat.chat_completions(url, request_data, headers):
        api_token = ApiTokenModel(**data)
        db.add(api_token)
        db.commit()
    except Exception as e:
        logger.error(e)
async def get_chat_info(db, chat_id: str):
    return db.query(DialogModel).filter_by(id=chat_id, status=Dialog_STATSU_ON).first()
async def get_chat_object(mode):
    if mode == workflow_chat:
        url = settings.dify_base_url + DF_CHAT_WORKFLOW
        return ChatWorkflow(), url
    else:
        url = settings.dify_base_url + DF_CHAT_AGENT
        return ChatAgent(), url
async def service_chat_dialog(db, chat_id: str, question: str, session_id: str, user_id, mode: str):
    conversation_id = ""
    token = await get_chat_token(db, rg_api_token)
    url = settings.fwr_base_url + RG_CHAT_DIALOG.format(chat_id)
    chat = ChatDialog()
    session = await add_session_log(db, session_id, question, chat_id, user_id, mode, session_id, 1)
    if session:
        conversation_id = session.conversation_id
    message = {"role": "assistant", "answer": "", "reference": {}}
    try:
        async for ans in chat.chat_completions(url, await chat.request_data(question, conversation_id),
                                               await chat.get_headers(token)):
            data = {}
            error = ""
            status = http_200
            if ans.get("code", None) == 102:
                error = ans.get("message", "请输入你的问题!")
                data = {"answer":error}
                event = "message"
                error = ans.get("message", "error!")
                status = http_400
                event = smart_message_error
            else:
                if isinstance(ans.get("data"), bool) and ans.get("data") is True:
                    data = {}
                    event = "message_end"
                    event = smart_message_end
                else:
                    data = ans.get("data", {})
                    message = ans.get("data", {})
                    event = "message"
            message_str = "data: " + json.dumps({"event": event, "data": data}, ensure_ascii=False) + "\n\n"
                    # conversation_id = data.get("session_id", "")
                    if "session_id" in data:
                        del data["session_id"]
                    message = data
                    event = smart_message_cover
            message_str = "data: " + json.dumps(
                {"event": event, "data": data, "error": error, "status": status, "session_id": session_id},
                ensure_ascii=False) + "\n\n"
            for i in range(0, len(message_str), max_chunk_size):
                chunk = message_str[i:i + max_chunk_size]
                # print(chunk)
                yield chunk  # 发送分块消息
        await ChatSessionDao(db).update_session_by_id(
            session_id=session_id,
            session=None,
            message=message
        )
    except Exception as e:
        logger.error(e)
        try:
            yield "data: " + json.dumps({"message": smart_message_error,
                                         "error": "\n**ERROR**: " + str(e), "status": http_500},
                                        ensure_ascii=False) + "\n\n"
        except:
            ...
    finally:
        message["role"] = "assistant"
        await update_session_log(db, session_id, message, conversation_id)
async def data_process(data):
    if isinstance(data, str):
        return data.replace("dify", "smart")
    elif isinstance(data, dict):
        for k in list(data.keys()):
            if isinstance(k, str) and "dify" in k:
                new_k = k.replace("dify", "smart")
                data[new_k] = await data_process(data[k])
                del data[k]
            else:
                data[k] = await data_process(data[k])
        return data
    elif isinstance(data, list):
        for i in range(len(data)):
            data[i] = await data_process(data[i])
        return data
    else:
        return data
async def service_chat_workflow(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str):
    conversation_id = ""
    answer_event = ""
    answer_agent = ""
    answer_workflow = ""
    download_url = ""
    message_id = ""
    task_id = ""
    error = ""
    files = []
    node_list = []
    token = await get_chat_token(db, chat_id)
    chat, url = await get_chat_object(mode)
    if hasattr(chat_data, "query"):
        query = chat_data.query
    else:
        query = "start new workflow"
    session = await add_session_log(db, session_id,query if query else "start new conversation", chat_id, user_id, mode, conversation_id, 3)
    if session:
        conversation_id = session.conversation_id
    try:
        async for ans in chat.chat_completions(url,
                                               await chat.request_data(query, conversation_id, str(user_id), chat_data),
                                               await chat.get_headers(token)):
            data = {}
            status = http_200
            conversation_id = ans.get("conversation_id")
            task_id = ans.get("task_id")
            if ans.get("event") == message_error:
                error = ans.get("message", "参数异常!")
                status = http_400
                event = smart_message_error
            elif ans.get("event") == message_agent:
                data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")}
                answer_agent += ans.get("answer", "")
                message_id = ans.get("message_id", "")
                event = smart_message_stream
            elif ans.get("event") == message_event:
                data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")}
                answer_event += ans.get("answer", "")
                message_id = ans.get("message_id", "")
                event = smart_message_stream
            elif ans.get("event") == message_file:
                data = {"url": ans.get("url", ""), "id": ans.get("id", ""),
                        "type": ans.get("type", "")}
                files.append(data)
                event = smart_message_file
            elif ans.get("event") in [workflow_started, node_started, node_finished]:
                data = ans.get("data", {})
                data["inputs"] = await data_process(data.get("inputs", {}))
                data["outputs"] = await data_process(data.get("outputs", {}))
                data["files"] = await data_process(data.get("files", []))
                data["process_data"] = ""
                if data.get("status") == "failed":
                    status = http_500
                    error = data.get("error", "")
                node_list.append(ans)
                event = [smart_workflow_started, smart_node_started, smart_node_finished][
                    [workflow_started, node_started, node_finished].index(ans.get("event"))]
            elif ans.get("event") == workflow_finished:
                data = ans.get("data", {})
                answer_workflow = data.get("outputs", {}).get("output")
                download_url = data.get("outputs", {}).get("download_url")
                event = smart_workflow_finished
                if data.get("status") == "failed":
                    status = http_500
                    error = data.get("error", "")
                node_list.append(ans)
            elif ans.get("event") == message_end:
                event = smart_message_end
            else:
                continue
            yield "data: " + json.dumps(
                {"event": event, "data": data, "error": error, "status": status, "task_id": task_id,
                 "session_id": session_id},
                ensure_ascii=False) + "\n\n"
    except Exception as e:
        logger.error(e)
        yield "data: " + json.dumps({"message": "message",
                                    "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
                                   ensure_ascii=False) + "\n\n"
        try:
            yield "data: " + json.dumps({"message": smart_message_error,
                                         "error": "\n**ERROR**: " + str(e), "status": http_500},
                                        ensure_ascii=False) + "\n\n"
        except:
            ...
    finally:
        await update_session_log(db, session_id, {"role": "assistant", "answer": answer_event or answer_agent or answer_workflow or error,
                                                  "download_url":download_url,
                                                  "node_list": node_list, "task_id": task_id, "id": message_id,
                                                  "error": error}, conversation_id)
        yield "data: " + json.dumps({"message": "message_end",
                                    "data": {}},
                                   ensure_ascii=False) + "\n\n"
async def service_chat_basic(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str):
    ...
async def service_chat_parameters(db, chat_id, user_id):
    chat_info = db.query(DialogModel).filter_by(id=chat_id).first()
    if not chat_info:
        return {}
    return chat_info.parameters
async def service_chat_sessions(db, chat_id, name):
    token = await get_chat_token(db, rg_api_token)
    # print(token)
    if not token:
        return {}
    url = settings.fwr_base_url + RG_CHAT_SESSIONS.format(chat_id)
    chat = ChatDialog()
    return await chat.chat_sessions(url, {"name": name}, await chat.get_headers(token))
async def service_chat_sessions_list(db, chat_id, current, page_size, user_id, keyword):
    total, session_list = await ChatSessionDao(db).get_session_list(
        user_id=user_id,
        agent_id=chat_id,
        keyword=keyword,
        page=current,
        page_size=page_size
    )
    return json.dumps({"total":total, "rows": [session.to_dict() for session in session_list]})
async def service_chat_session_log(db, session_id):
    session_log = await ChatSessionDao(db).get_session_by_id(session_id)
    return json.dumps(session_log.log_to_json())
async def service_chat_upload(db, chat_id, file, user_id):
    files = []
    token = await get_chat_token(db, chat_id)
    if not token:
        return files
    url = settings.dify_base_url + DF_UPLOAD_FILE
    chat = ChatBaseApply()
    for f in file:
        try:
            file_content = await f.read()
            file_upload = await chat.chat_upload(url, {"file": (f.filename, file_content)}, {"user": str(user_id)},
                                                 {'Authorization': f'Bearer {token}'})
            try:
                tokens = await read_file(file_content, f.filename, f.content_type)
                file_upload["tokens"] = tokens
            except:
                ...
            files.append(file_upload)
        except Exception as e:
            logger.error(e)
    return json.dumps(files) if files else ""
async def get_str_token(input_str):
    # 获取tokenizer对象,目前只支持通义千问系列模型
    tokenizer = get_tokenizer('qwen-turbo')
    # 将字符串切分成token并转换为token id
    tokens = tokenizer.encode(input_str)
    return len(tokens)
async def read_pdf(pdf_stream):
    text = ""
    with fitz.open(stream=pdf_stream, filetype="pdf") as pdf_document:
        for page in pdf_document:
            text += page.get_text()
    return text
async def read_word(word_stream):
    # 使用 python-docx 打开 Word 文件流
    doc = Document(io.BytesIO(word_stream))
    # 提取每个段落的文本
    text = ""
    for para in doc.paragraphs:
        text += para.text
    return text
async def read_file(file, filename, content_type):
    text = ""
    if content_type == "application/pdf" or filename.endswith('.pdf'):
        # 提取 PDF 内容
        text = await read_pdf(file)
    elif content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" or filename.endswith(
            '.docx'):
        text = await read_word(file)
    return await get_str_token(text)
async def service_chunk_retrieval(query, knowledge_id, top_k, similarity_threshold, api_key):
    print(query)
    try:
        request_data = json.loads(query)
        payload = {
            "question": request_data.get("query", ""),
            "dataset_ids": request_data.get("dataset_ids", []),
            "page_size": top_k,
            "similarity_threshold": similarity_threshold
        }
    except json.JSONDecodeError as e:
        fixed_json = query.replace("'", '"')
        try:
            request_data = json.loads(fixed_json)
            payload = {
                "question": request_data.get("query", ""),
                "dataset_ids": request_data.get("dataset_ids", []),
                "page_size": top_k,
                "similarity_threshold": similarity_threshold
            }
        except Exception:
            payload = {
                "question":query,
                "dataset_ids":[knowledge_id],
                "page_size": top_k,
                "similarity_threshold": similarity_threshold
            }
    url = settings.fwr_base_url + RG_ORIGINAL_URL
    chat = ChatBaseApply()
    response = await  chat.chat_post(url, payload, await chat.get_headers(api_key))
    if not response:
        raise HTTPException(status_code=500, detail="服务异常!")
    records = [
        {
            "content": chunk["content"],
            "score": chunk["similarity"],
            "title": chunk.get("document_keyword", "Unknown Document"),
            "metadata": {"document_id": chunk["document_id"],
                         "path": f"{settings.fwr_base_url}/document/{chunk['document_id']}?ext={chunk.get('document_keyword').split('.')[-1]}&prefix=document",
                         'highlight': chunk.get("highlight") , "image_id":  chunk.get("image_id"), "positions": chunk.get("positions"),}
        }
        for chunk in response.get("data", {}).get("chunks", [])
    ]
    return records
async def service_base_chunk_retrieval(query, knowledge_id, top_k, similarity_threshold, api_key):
    # request_data = json.loads(query)
    payload = {
        "question": query,
        "dataset_ids": [knowledge_id],
        "page_size": top_k,
        "similarity_threshold": similarity_threshold
    }
    url = settings.fwr_base_url + RG_ORIGINAL_URL
    # url = "http://192.168.20.116:11080/" + RG_ORIGINAL_URL
    chat = ChatBaseApply()
    response = await chat.chat_post(url, payload, await chat.get_headers(api_key))
    if not response:
        raise HTTPException(status_code=500, detail="服务异常!")
    records = [
        {
            "content": chunk["content"],
            "score": chunk["similarity"],
            "title": chunk.get("document_keyword", "Unknown Document"),
            "metadata": {"document_id": chunk["document_id"]}
        }
        for chunk in response.get("data", {}).get("chunks", [])
    ]
    return records
if __name__ == "__main__":
    q = json.dumps({"query": "设备", "dataset_ids": ["fc68db52f43111efb94a0242ac120004"]})
    top_k = 2
    similarity_threshold = 0.5
    api_key = "ragflow-Y4MGYwY2JlZjM2YjExZWY4ZWU5MDI0Mm"
    # a = service_chunk_retrieval(q, top_k, similarity_threshold, api_key)
    # print(a)
    async def a():
        b = await service_chunk_retrieval(q, top_k, similarity_threshold, api_key)
        print(b)
    asyncio.run(a())