zhm
2025-07-25 112aace08718ad0ead624286fe09e4bf941dee5a
qwen_thread.py
@@ -1,71 +1,60 @@
import logging
import time
from concurrent.futures import ThreadPoolExecutor
import threading
import torch
from PIL import Image
from pymilvus import connections, Collection
from datetime import datetime
import os
import requests
import asyncio
import logging
import re
from logging.handlers import RotatingFileHandler
from qwen_vl_utils import process_vision_info
from transformers import AutoModelForVision2Seq, AutoProcessor
class qwen_thread:
    def __init__(self, max_workers,config,model_path):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        self.semaphore = threading.Semaphore(max_workers)
        self.max_workers = max_workers
    def __init__(self, config,logger):
        self.config = config
        self.max_workers = int(config.get("threadnum"))
        self.executor = ThreadPoolExecutor(max_workers=int(config.get("threadnum")))
        self.semaphore = threading.Semaphore(int(config.get("threadnum")))
        self.logger = logger
        # 初始化Milvus集合
        connections.connect("default", host=config.get("milvusurl"), port=config.get("milvusport"))
        # 加载集合
        self.collection = Collection(name="smartobject")
        self.collection.load()
        self.config = config
        if config.get('cuda') is None or config.get('cuda') == '0':
            self.device = f"cuda"
        else:
            self.device = f"cuda:{config.get('cuda')}"
        self.model_pool = []
        self.lock_pool = [threading.Lock() for _ in range(max_workers)]
        for i in range(max_workers):
        self.lock_pool = [threading.Lock() for _ in range(int(config.get("qwenwarning")))]
        for i in range(int(config.get("qwenwarning"))):
            model = AutoModelForVision2Seq.from_pretrained(
                model_path,
                device_map="cuda:1",
                config.get("qwenaddr"),
                device_map=self.device,
                trust_remote_code=True,
                use_safetensors=True,
                torch_dtype=torch.float16
            ).eval()
            model = model.to(self.device)
            self.model_pool.append(model)
        # 共享的处理器 (线程安全)
        self.processor = AutoProcessor.from_pretrained(model_path,use_fast=True)
        self.processor = AutoProcessor.from_pretrained(config.get("qwenaddr"), use_fast=True)
        # 创建实例专属logger
        self.logger = logging.getLogger(f"{self.__class__}_{id(self)}")
        self.logger.setLevel(logging.INFO)
        # 避免重复添加handler
        if not self.logger.handlers:
            handler = RotatingFileHandler(
                filename=os.path.join("logs", 'thread_log.log'),
                maxBytes=10 * 1024 * 1024,
                backupCount=3,
                encoding='utf-8'
            )
            formatter = logging.Formatter(
                '%(asctime)s - %(filename)s:%(lineno)d - %(funcName)s() - %(levelname)s: %(message)s'
            )
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)
    def submit(self,res_a):
        # 尝试获取信号量(非阻塞)
        acquired = self.semaphore.acquire(blocking=False)
        if not acquired:
            self.logger.info(f"线程池已满,等待空闲线程... (当前活跃: {self.max_workers - self.semaphore._value}/{self.max_workers})")
            #self.logger.info(f"线程池已满,等待空闲线程... (当前活跃: {self.max_workers - self.semaphore._value}/{self.max_workers})")
            # 阻塞等待直到有可用线程
            self.semaphore.acquire(blocking=True)
@@ -73,40 +62,33 @@
        future.add_done_callback(self._release_semaphore)
        return future
    def _wrap_task(self, res):
    def _wrap_task(self, res_a):
        try:
            #self.logger.info(f"处理: { res['id']}开始")
            current_time = datetime.now()
            image_id = self.tark_do(res, self.config.get("ragurl"), self.config.get("ragmode"), self.config.get("max_tokens"))
            self.logger.info(f"处理: { res['id']}完毕{image_id}:{datetime.now() - current_time}")
            return image_id
            self.tark_do(res_a, self.config.get("ragurl"), self.config.get("ragmode"), self.config.get("max_tokens"))
        except Exception as e:
            self.logger.info(f"任务 { res['id']} 处理出错: {e}")
            self.logger.info(f"处理出错: {e}")
            raise
    def tark_do(self,res,ragurl,rag_mode,max_tokens):
        try :
            # 1. 从集合A获取向量和元数据
            is_waning = 0
            image_des = self.image_desc(f"{res['image_desc_path']}")
            self.logger.info(image_des)
            if image_des:
                # rule_text = self.get_rule(ragurl)
                is_waning = self.image_rule_chat(image_des,res['waning_value'],ragurl,rag_mode,max_tokens)
                is_desc = 2
            else:
                is_waning = 0
                is_desc = 3
        try:
            # 生成图片描述
            ks_time = datetime.now()
            risk_description = ""
            suggestion = ""
            # 调用规则匹配方法,判断是否预警
            is_waning = self.image_rule(res)
            self.logger.info(f"预警规则规则规则is_waning:{is_waning}")
            #更新数据的预警结果与数据预警状态
            data = {
                "id": res['id'],
                "event_level_id": res['event_level_id'],  # event_level_id
                "event_level_name": res['event_level_name'],  # event_level_id
                "rule_id": res["rule_id"],
                "video_point_id": res['video_point_id'],  # video_point_id
                "video_point_name": res['video_point_name'],
                "is_waning": is_waning,
                "is_desc": is_desc,
                "zh_desc_class": image_des,  # text_vector
                "is_desc": 5,  #改为已经预警
                "zh_desc_class": res['zh_desc_class'],  # text_vector
                "bounding_box": res['bounding_box'],  # bounding_box
                "task_id": res['task_id'],  # task_id
                "task_name": res['task_name'],  # task_id
@@ -117,154 +99,75 @@
                "image_path": res['image_path'],  # image_path
                "image_desc_path": res['image_desc_path'],  # image_desc_path
                "video_path": res['video_path'],
                "text_vector": res['text_vector']
                "text_vector": res['text_vector'],
                "risk_description": risk_description,
                "suggestion": suggestion,
                "knowledge_id": res['knowledge_id']
            }
            self.collection.delete(f"id == {res['id']}")
            # 保存到milvus
            image_id = self.collection.upsert(data).primary_keys
            if is_desc == 2:
                data = {
                    "id": str(image_id[0]),
                    "video_point_id": res['video_point_id'],
                    "video_path": res["video_point_name"],
                    "zh_desc_class": image_des,
                    "detect_time": res['detect_time'],
                    "image_path": f"{res['image_path']}",
                    "task_name": res["task_name"],
                    "event_level_name": res["event_level_name"],
                    "rtsp_address": f"{res['video_path']}"
                }
                # 调用rag
                asyncio.run(self.insert_json_data(ragurl, data))
            return image_id
            image_id = self.collection.insert(data).primary_keys
            res['id'] = image_id[0]
            self.logger.info(f"{res['video_point_id']}预警执行完毕:{image_id}运行结束总体用时:{datetime.now() - ks_time}")
            return None
        except Exception as e:
            self.logger.info(f"线程:执行模型解析时出错:任务:{e}")
            self.logger.info(f"线程:执行模型解析时出错::{e}")
            return 0
    def image_desc(self, image_path):
    def image_rule(self, res_data):
        self.logger.info(f"预警规则规则规则等级分类就是打裂缝多少积分")
        try:
            model, lock = self._acquire_model()
            # 2. 处理图像
            image = Image.open(image_path).convert("RGB")  # 替换为您的图片路径
            image = image.resize((600, 600), Image.Resampling.LANCZOS)  # 高质量缩放
            image = Image.open(res_data['image_desc_path']).convert("RGB").resize((600, 600), Image.Resampling.LANCZOS)
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image",
                        },
                        {"type": "text", "text": "请详细描述图片中的目标信息及特征。返回格式为整段文字描述"},
                        {"type": "image", "image": image},
                        {"type": "text", "text": f"请检测图片中是否{res_data['waning_value']}?请回答yes或no"},
                    ],
                }
            ]
            # Preparation for inference
            text = self.processor.apply_chat_template(
                messages, add_generation_prompt=True
                messages, tokenize=False, add_generation_prompt=True
            )
            image_inputs, video_inputs = process_vision_info(messages)
            inputs = self.processor(
                text=[text],
                images=[image],
                images=image_inputs,
                videos=video_inputs,
                padding=True,
                return_tensors="pt",
            )
            inputs = inputs.to("cuda:1")
            current_time = datetime.now()
            outputs = model.generate(**inputs,
                                               max_new_tokens=300,
                                               do_sample=True,
                                               temperature=0.7,
                                               renormalize_logits=True
                                               )
            print(f"处理完毕:{datetime.now() - current_time}")
            inputs = inputs.to(model.device)
            with torch.no_grad():
                outputs = model.generate(**inputs, max_new_tokens=10)
            generated_ids = outputs[:, len(inputs.input_ids[0]):]
            image_text = self.processor.batch_decode(
                generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
            )
            image_des = (image_text[0]).strip()
            return image_des
            upper_text = image_des.upper()
            self.logger.info(f"预警规则规则规则:{upper_text}")
            if "YES" in upper_text:
                return 1
            else:
                return 0
        except Exception as e:
            self.logger.info(f"线程:执行图片描述时出错:{e}")
            return 0
        finally:
            # 4. 释放模型
            self._release_model(model)
            torch.cuda.empty_cache()
    def get_rule(self,ragurl):
        try:
            rule_text = None
            search_data = {
                "collection_name": "smart_rule",
                "query_text": "",
                "search_mode": "hybrid",
                "limit": 100,
                "weight_dense": 0.7,
                "weight_sparse": 0.3,
                "filter_expr": "",
                "output_fields": ["text"]
            }
            response = requests.post(ragurl + "/search", json=search_data)
            results = response.json().get('results')
            rule_text = ""
            ruleid = 1
            for rule in results:
                if rule['score'] >= 0:
                    rule_text = rule_text + str(ruleid) + ". " + rule['entity'].get('text') + ";\n"
                    ruleid = ruleid + 1
            # self.logger.info(len(rule_text))
            else:
                self.logger.info(f"线程:执行获取规则时出错:{response}")
            return rule_text
        except Exception as e:
            self.logger.info(f"线程:执行获取规则时出错:{e}")
            return None
    def image_rule_chat(self, image_des,rule_text, ragurl, rag_mode,max_tokens):
        try:
            content = (
                f"图片描述内容为:\n{image_des}\n规则内容:\n{rule_text}。\n请验证图片描述中是否有符合规则的内容,不进行推理和think。返回结果格式为[xxx符合的规则id],如果没有返回[]")
            # self.logger.info(content)
            #self.logger.info(len(content))
            search_data = {
                "prompt": "",
                "messages": [
                    {
                        "role": "user",
                        "content": content
                    }
                ],
                "llm_name": rag_mode,
                "stream": False,
                "gen_conf": {
                    "temperature": 0.7,
                    "max_tokens": max_tokens
                }
            }
            response = requests.post(ragurl + "/chat", json=search_data)
            results = response.json().get('data')
            #self.logger.info(len(results))
            # self.logger.info(results)
            ret = re.sub(r'<think>.*?</think>', '', results, flags=re.DOTALL)
            ret = ret.replace(" ", "").replace("\t", "").replace("\n", "")
            is_waning = 0
            if len(ret) > 2:
                is_waning = 1
            return is_waning
        except Exception as e:
            self.logger.info(f"线程:执行规则匹配时出错:{image_des, rule_text, ragurl, rag_mode,e}")
            return None
    async def insert_json_data(self, ragurl, data):
        try:
            data = {'collection_name': "smartrag", "data": data, "description": ""}
            requests.post(ragurl + "/insert_json_data", json=data, timeout=(0.3, 0.3))
            #self.logger.info(f"调用录像服务:{ragurl, data}")
        except Exception as e:
            #self.logger.info(f"{self._thread_name}线程:调用录像时出错:地址:{ragurl}:{e}")
            return
    def _release_semaphore(self, future):
        self.semaphore.release()
        self.logger.info(f"释放线程 (剩余空闲: {self.semaphore._value}/{self.max_workers})")
        #self.logger.info(f"释放线程 (剩余空闲: {self.semaphore._value}/{self.max_workers})")
    def shutdown(self):
        """安全关闭"""
@@ -288,29 +191,4 @@
                self.lock_pool[i].release()
                break
    def remove_duplicate_lines(self,text):
        seen = set()
        result = []
        for line in text.split('。'):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)
    def remove_duplicate_lines_d(self,text):
        seen = set()
        result = []
        for line in text.split(','):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)
    def remove_duplicate_lines_n(self,text):
        seen = set()
        result = []
        for line in text.split('\n'):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)