| | |
| | | #include <basic/util/app/AppPreference.hpp> |
| | | #include "DnDetect.h" |
| | | |
| | | DnDetect::DnDetect(const int gpuIndex):m_net(nullptr),m_thresh(0.5),m_hier_thresh(0.5),m_nms(0.45),names(nullptr),alphabet(nullptr) |
| | | { |
| | | cuda_set_device(gpuIndex); |
| | | |
| | | char *datacfg = "cfg/coco.data"; |
| | | char *cfgfile = "cfg/yolov3.cfg"; |
| | | char *weightfile = "./yolov3.weights"; |
| | | |
| | | double loadtime = what_time_is_it_now(); |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | names = get_labels(name_list); |
| | | |
| | | alphabet = load_alphabet(); |
| | | m_net = load_network(cfgfile, weightfile, 0); |
| | | set_batch_network(m_net, 1); |
| | | printf("load mod use %f seconds.\n", what_time_is_it_now()-loadtime); |
| | | |
| | | srand(2222222); |
| | | double attime; |
| | | float nms=.45; |
| | | } |
| | | |
| | | DnDetect::~DnDetect() |
| | | { |
| | | DnDetect::DnDetect::DnDetect(const int gpuIndex) : m_net(nullptr), m_thresh(0.5), m_hier_thresh(0.5), m_nms(0.45), |
| | | names(nullptr), alphabet(nullptr), m_thdInit(init, this), |
| | | m_bInitThd(false) { |
| | | |
| | | } |
| | | |
| | | std::vector<cv::Rect2f> DnDetect::detect(cv::Mat & img) |
| | | { |
| | | DnDetect::DnDetect::~DnDetect() { |
| | | |
| | | double bttime=what_time_is_it_now(); |
| | | } |
| | | |
| | | std::vector<DnDetect::YoloObjInfo> DnDetect::DnDetect::detect(cv::Mat &img) { |
| | | std::lock_guard<std::mutex> dataGuard(dataMtx); |
| | | |
| | | ClockTimer cl("DnDetect::DnDetect"); |
| | | std::vector<YoloObjInfo> objInfos; |
| | | if (!m_bInitThd) return objInfos; |
| | | double bttime = what_time_is_it_now(); |
| | | image im = matToImg(img); |
| | | // DBG("matToImg : "<<what_time_is_it_now()-bttime); |
| | | // printf("matToImg %f seconds.\n", what_time_is_it_now()-bttime); |
| | | image sized = letterbox_image(im, m_net->w, m_net->h); |
| | | layer l = m_net->layers[m_net->n-1]; |
| | | layer l = m_net->layers[m_net->n - 1]; |
| | | |
| | | float *X = sized.data; |
| | | //attime=what_time_is_it_now(); |
| | | //attime=what_time_is_it_now();p-> |
| | | network_predict(m_net, X); |
| | | //printf("Predicted in %f seconds.\n", what_time_is_it_now()-attime); |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(m_net, im.w, im.h, 0.5f, 0.1f, 0, 1, &nboxes); |
| | | if (m_nms) do_nms_sort(dets, nboxes, l.classes, m_nms); |
| | | // draw_detections(im, dets, nboxes, m_thresh, names, alphabet, l.classes); |
| | | std::vector<cv::Rect2f> rects; |
| | | for(int i=0;i<nboxes;i++) |
| | | |
| | | detection *dets; |
| | | |
| | | { |
| | | // std::lock_guard<std::mutex> dataGuard(dataMtx); |
| | | // dataMtx.lock(); |
| | | dets = get_network_boxes(m_net, im.w, im.h, m_thresh, m_hier_thresh, 0, 1, &nboxes); |
| | | if (nboxes > 100) { |
| | | // dataMtx.unlock(); |
| | | return objInfos; |
| | | } |
| | | if (m_nms) do_nms_sort(dets, nboxes, l.classes, m_nms); |
| | | // dataMtx.unlock(); |
| | | } |
| | | |
| | | // draw_detections(im, dets, nboxes, m_thresh, names, alphabet, l.classes); |
| | | for (int i = 0; i < nboxes; i++) { |
| | | YoloObjInfo objInfo; |
| | | std::vector<float> vec(80); |
| | | memcpy(&vec[0],dets[i].prob,sizeof(float)*80); |
| | | memcpy(&vec[0], dets[i].prob, sizeof(float) * 80); |
| | | int type = -1; |
| | | for(int j = 0; j < l.classes; ++j){ |
| | | if(j != 0){ |
| | | for (int j = 0; j < l.classes; ++j) { |
| | | //#todo new func in list out bool |
| | | if (j != 0) { |
| | | continue; |
| | | } |
| | | if (dets[i].prob[j] > m_thresh){ |
| | | //#todo get score |
| | | if (dets[i].prob[j] > 0.0f) { |
| | | if (type < 0) { |
| | | type = j; |
| | | objInfo.prob = dets[i].prob[j]; |
| | | } else { |
| | | } |
| | | } else{ |
| | | } else { |
| | | } |
| | | } |
| | | if(type >= 0){ |
| | | if(type != 0){ |
| | | continue; |
| | | } |
| | | float left = (dets[i].bbox.x-dets[i].bbox.w/2.); |
| | | float top = (dets[i].bbox.y-dets[i].bbox.h/2.); |
| | | cv::Rect2f rect(left,top,dets[i].bbox.w,dets[i].bbox.h); |
| | | std::cout<<"rect.x : "<<left<<" rect.y : "<<top<<" rect.w : "<<rect.width<<" rect.h : "<<rect.height<<std::endl; |
| | | rects.push_back(rect); |
| | | if (type >= 0) { |
| | | // if(type != 0){ |
| | | // continue; |
| | | // } |
| | | objInfo.type = type; |
| | | objInfo.rcObj.left = (dets[i].bbox.x - dets[i].bbox.w / 2.); |
| | | objInfo.rcObj.top = (dets[i].bbox.y - dets[i].bbox.h / 2.); |
| | | objInfo.rcObj.right = (dets[i].bbox.x + dets[i].bbox.w / 2.); |
| | | objInfo.rcObj.bottom = (dets[i].bbox.y + dets[i].bbox.h / 2.); |
| | | objInfos.push_back(objInfo); |
| | | } |
| | | |
| | | |
| | | } |
| | | free_detections(dets, nboxes); |
| | | // show_image(im, "Video"); |
| | | // cv::waitKey(10); |
| | | free_image(im); |
| | | free_image(sized); |
| | | printf("all time use %f seconds.\n", what_time_is_it_now()-bttime); |
| | | return rects; |
| | | //printf("all time use %f seconds.\n", what_time_is_it_now()-bttime); |
| | | return objInfos; |
| | | } |
| | | |
| | | image DnDetect::matToImg(cv::Mat& RefImg) { |
| | | image DnDetect::DnDetect::matToImg(cv::Mat &RefImg) { |
| | | CV_Assert(RefImg.depth() == CV_8U); |
| | | |
| | | int h = RefImg.rows; |
| | |
| | | int channels = RefImg.channels(); |
| | | image im = make_image(w, h, 3); |
| | | int count = 0; |
| | | switch(channels){ |
| | | case 1:{ |
| | | switch (channels) { |
| | | case 1: { |
| | | cv::MatIterator_<unsigned char> it, end; |
| | | for (it = RefImg.begin<unsigned char>(), end = RefImg.end<unsigned char>(); it != end; ++it){ |
| | | im.data[count] = im.data[w*h + count] = im.data[w*h*2 + count] = (float)(*it)/255.0; |
| | | |
| | | for (it = RefImg.begin<unsigned char>(), end = RefImg.end<unsigned char>(); it != end; ++it) { |
| | | im.data[count] = im.data[w * h + count] = im.data[w * h * 2 + count] = (float) (*it) / 255.0; |
| | | ++count; |
| | | } |
| | | break; |
| | | } |
| | | case 3:{ |
| | | cv::MatIterator_<cv::Vec3b> it, end; |
| | | for (it = RefImg.begin<cv::Vec3b>(), end = RefImg.end<cv::Vec3b>(); it != end; ++it){ |
| | | im.data[count] = (float)(*it)[2]/255.0; |
| | | im.data[w*h + count] = (float)(*it)[1]/255.0; |
| | | im.data[w*h*2 + count] = (float)(*it)[0]/255.0; |
| | | ++count; |
| | | case 3: { |
| | | float *desData = im.data; |
| | | uchar *srcData = RefImg.data; |
| | | |
| | | int size = w * h; |
| | | int size2 = size * 2; |
| | | for (int i = 0; i < size; i++) { |
| | | *(desData) = *(srcData + 2) / 255.0f; |
| | | *(desData + size) = *(srcData + 1) / 255.0f; |
| | | *(desData + size2) = *(srcData) / 255.0f; |
| | | |
| | | desData++; |
| | | srcData += 3; |
| | | } |
| | | break; |
| | | } |
| | |
| | | } |
| | | return im; |
| | | } |
| | | |
| | | int DnDetect::DnDetect::init(void *arg) { |
| | | DnDetect *p = (DnDetect *) arg; |
| | | |
| | | p->m_thresh = appPref.getFloatData("thresh.detect"); |
| | | cuda_set_device(appPref.getIntData("gpu.index")); |
| | | |
| | | char *datacfg = "cfg/coco.data"; |
| | | char *cfgfile = "cfg/yolov3.cfg"; |
| | | char *weightfile = "./yolov3.weights"; |
| | | |
| | | double loadtime = what_time_is_it_now(); |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | p->names = get_labels(name_list); |
| | | |
| | | p->alphabet = load_alphabet(); |
| | | p->m_net = load_network(cfgfile, weightfile, 0); |
| | | set_batch_network(p->m_net, 1); |
| | | printf("load mod use %f seconds.\n", what_time_is_it_now() - loadtime); |
| | | |
| | | srand(2222222); |
| | | p->m_bInitThd = true; |
| | | return 0; |
| | | } |