| | |
| | | #include <stdlib.h>
|
| | | #include "darknet.h"
|
| | | #include "network.h"
|
| | | #include "region_layer.h"
|
| | | #include "cost_layer.h"
|
| | | #include "utils.h"
|
| | | #include "parser.h"
|
| | | #include "box.h"
|
| | | #include "demo.h"
|
| | | #include "option_list.h"
|
| | |
|
| | | #ifndef __COMPAR_FN_T
|
| | | #define __COMPAR_FN_T
|
| | | typedef int (*__compar_fn_t)(const void*, const void*);
|
| | | #ifdef __USE_GNU
|
| | | typedef __compar_fn_t comparison_fn_t;
|
| | | #endif
|
| | | #endif
|
| | |
|
| | | #include "http_stream.h"
|
| | |
|
| | | int check_mistakes = 0;
|
| | |
|
| | | static int coco_ids[] = { 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90 };
|
| | |
|
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path)
|
| | | {
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *train_images = option_find_str(options, "train", "data/train.txt");
|
| | | char *valid_images = option_find_str(options, "valid", train_images);
|
| | | char *backup_directory = option_find_str(options, "backup", "/backup/");
|
| | |
|
| | | network net_map;
|
| | | if (calc_map) {
|
| | | FILE* valid_file = fopen(valid_images, "r");
|
| | | if (!valid_file) {
|
| | | printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg);
|
| | | getchar();
|
| | | exit(-1);
|
| | | }
|
| | | else fclose(valid_file);
|
| | |
|
| | | cuda_set_device(gpus[0]);
|
| | | printf(" Prepare additional network for mAP calculation...\n");
|
| | | net_map = parse_network_cfg_custom(cfgfile, 1, 1);
|
| | | net_map.benchmark_layers = benchmark_layers;
|
| | | const int net_classes = net_map.layers[net_map.n - 1].classes;
|
| | |
|
| | | int k; // free memory unnecessary arrays
|
| | | for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1);
|
| | |
|
| | | char *name_list = option_find_str(options, "names", "data/names.list");
|
| | | int names_size = 0;
|
| | | char **names = get_labels_custom(name_list, &names_size);
|
| | | if (net_classes != names_size) {
|
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
|
| | | name_list, names_size, net_classes, cfgfile);
|
| | | if (net_classes > names_size) getchar();
|
| | | }
|
| | | free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes);
|
| | | }
|
| | |
|
| | | srand(time(0));
|
| | | char *base = basecfg(cfgfile);
|
| | | printf("%s\n", base);
|
| | | float avg_loss = -1;
|
| | | network* nets = (network*)xcalloc(ngpus, sizeof(network));
|
| | |
|
| | | srand(time(0));
|
| | | int seed = rand();
|
| | | int k;
|
| | | for (k = 0; k < ngpus; ++k) {
|
| | | srand(seed);
|
| | | #ifdef GPU
|
| | | cuda_set_device(gpus[k]);
|
| | | #endif
|
| | | nets[k] = parse_network_cfg(cfgfile);
|
| | | nets[k].benchmark_layers = benchmark_layers;
|
| | | if (weightfile) {
|
| | | load_weights(&nets[k], weightfile);
|
| | | }
|
| | | if (clear) {
|
| | | *nets[k].seen = 0;
|
| | | *nets[k].cur_iteration = 0;
|
| | | }
|
| | | nets[k].learning_rate *= ngpus;
|
| | | }
|
| | | srand(time(0));
|
| | | network net = nets[0];
|
| | |
|
| | | const int actual_batch_size = net.batch * net.subdivisions;
|
| | | if (actual_batch_size == 1) {
|
| | | printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n");
|
| | | getchar();
|
| | | }
|
| | | else if (actual_batch_size < 8) {
|
| | | printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size);
|
| | | }
|
| | |
|
| | | int imgs = net.batch * net.subdivisions * ngpus;
|
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | data train, buffer;
|
| | |
|
| | | layer l = net.layers[net.n - 1];
|
| | |
|
| | | int classes = l.classes;
|
| | |
|
| | | list *plist = get_paths(train_images);
|
| | | int train_images_num = plist->size;
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | const int init_w = net.w;
|
| | | const int init_h = net.h;
|
| | | const int init_b = net.batch;
|
| | | int iter_save, iter_save_last, iter_map;
|
| | | iter_save = get_current_iteration(net);
|
| | | iter_save_last = get_current_iteration(net);
|
| | | iter_map = get_current_iteration(net);
|
| | | float mean_average_precision = -1;
|
| | | float best_map = mean_average_precision;
|
| | |
|
| | | load_args args = { 0 };
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | | args.c = net.c;
|
| | | args.paths = paths;
|
| | | args.n = imgs;
|
| | | args.m = plist->size;
|
| | | args.classes = classes;
|
| | | args.flip = net.flip;
|
| | | args.jitter = l.jitter;
|
| | | args.resize = l.resize;
|
| | | args.num_boxes = l.max_boxes;
|
| | | net.num_boxes = args.num_boxes;
|
| | | net.train_images_num = train_images_num;
|
| | | args.d = &buffer;
|
| | | args.type = DETECTION_DATA;
|
| | | args.threads = 64; // 16 or 64
|
| | |
|
| | | args.angle = net.angle;
|
| | | args.gaussian_noise = net.gaussian_noise;
|
| | | args.blur = net.blur;
|
| | | args.mixup = net.mixup;
|
| | | args.exposure = net.exposure;
|
| | | args.saturation = net.saturation;
|
| | | args.hue = net.hue;
|
| | | args.letter_box = net.letter_box;
|
| | | if (dont_show && show_imgs) show_imgs = 2;
|
| | | args.show_imgs = show_imgs;
|
| | |
|
| | | #ifdef OPENCV
|
| | | //int num_threads = get_num_threads();
|
| | | //if(num_threads > 2) args.threads = get_num_threads() - 2;
|
| | | args.threads = 6 * ngpus; // 3 for - Amazon EC2 Tesla V100: p3.2xlarge (8 logical cores) - p3.16xlarge
|
| | | //args.threads = 12 * ngpus; // Ryzen 7 2700X (16 logical cores)
|
| | | mat_cv* img = NULL;
|
| | | float max_img_loss = 5;
|
| | | int number_of_lines = 100;
|
| | | int img_size = 1000;
|
| | | char windows_name[100];
|
| | | sprintf(windows_name, "chart_%s.png", base);
|
| | | img = draw_train_chart(windows_name, max_img_loss, net.max_batches, number_of_lines, img_size, dont_show, chart_path);
|
| | | #endif //OPENCV
|
| | | if (net.track) {
|
| | | args.track = net.track;
|
| | | args.augment_speed = net.augment_speed;
|
| | | if (net.sequential_subdivisions) args.threads = net.sequential_subdivisions * ngpus;
|
| | | else args.threads = net.subdivisions * ngpus;
|
| | | args.mini_batch = net.batch / net.time_steps;
|
| | | printf("\n Tracking! batch = %d, subdiv = %d, time_steps = %d, mini_batch = %d \n", net.batch, net.subdivisions, net.time_steps, args.mini_batch);
|
| | | }
|
| | | //printf(" imgs = %d \n", imgs);
|
| | |
|
| | | pthread_t load_thread = load_data(args);
|
| | |
|
| | | int count = 0;
|
| | | double time_remaining, avg_time = -1, alpha_time = 0.01;
|
| | |
|
| | | //while(i*imgs < N*120){
|
| | | while (get_current_iteration(net) < net.max_batches) {
|
| | | if (l.random && count++ % 10 == 0) {
|
| | | float rand_coef = 1.4;
|
| | | if (l.random != 1.0) rand_coef = l.random;
|
| | | printf("Resizing, random_coef = %.2f \n", rand_coef);
|
| | | float random_val = rand_scale(rand_coef); // *x or /x
|
| | | int dim_w = roundl(random_val*init_w / net.resize_step + 1) * net.resize_step;
|
| | | int dim_h = roundl(random_val*init_h / net.resize_step + 1) * net.resize_step;
|
| | | if (random_val < 1 && (dim_w > init_w || dim_h > init_h)) dim_w = init_w, dim_h = init_h;
|
| | |
|
| | | int max_dim_w = roundl(rand_coef*init_w / net.resize_step + 1) * net.resize_step;
|
| | | int max_dim_h = roundl(rand_coef*init_h / net.resize_step + 1) * net.resize_step;
|
| | |
|
| | | // at the beginning (check if enough memory) and at the end (calc rolling mean/variance)
|
| | | if (avg_loss < 0 || get_current_iteration(net) > net.max_batches - 100) {
|
| | | dim_w = max_dim_w;
|
| | | dim_h = max_dim_h;
|
| | | }
|
| | |
|
| | | if (dim_w < net.resize_step) dim_w = net.resize_step;
|
| | | if (dim_h < net.resize_step) dim_h = net.resize_step;
|
| | | int dim_b = (init_b * max_dim_w * max_dim_h) / (dim_w * dim_h);
|
| | | int new_dim_b = (int)(dim_b * 0.8);
|
| | | if (new_dim_b > init_b) dim_b = new_dim_b;
|
| | |
|
| | | args.w = dim_w;
|
| | | args.h = dim_h;
|
| | |
|
| | | int k;
|
| | | if (net.dynamic_minibatch) {
|
| | | for (k = 0; k < ngpus; ++k) {
|
| | | (*nets[k].seen) = init_b * net.subdivisions * get_current_iteration(net); // remove this line, when you will save to weights-file both: seen & cur_iteration
|
| | | nets[k].batch = dim_b;
|
| | | int j;
|
| | | for (j = 0; j < nets[k].n; ++j)
|
| | | nets[k].layers[j].batch = dim_b;
|
| | | }
|
| | | net.batch = dim_b;
|
| | | imgs = net.batch * net.subdivisions * ngpus;
|
| | | args.n = imgs;
|
| | | printf("\n %d x %d (batch = %d) \n", dim_w, dim_h, net.batch);
|
| | | }
|
| | | else
|
| | | printf("\n %d x %d \n", dim_w, dim_h);
|
| | |
|
| | | pthread_join(load_thread, 0);
|
| | | train = buffer;
|
| | | free_data(train);
|
| | | load_thread = load_data(args);
|
| | |
|
| | | for (k = 0; k < ngpus; ++k) {
|
| | | resize_network(nets + k, dim_w, dim_h);
|
| | | }
|
| | | net = nets[0];
|
| | | }
|
| | | double time = what_time_is_it_now();
|
| | | pthread_join(load_thread, 0);
|
| | | train = buffer;
|
| | | if (net.track) {
|
| | | net.sequential_subdivisions = get_current_seq_subdivisions(net);
|
| | | args.threads = net.sequential_subdivisions * ngpus;
|
| | | printf(" sequential_subdivisions = %d, sequence = %d \n", net.sequential_subdivisions, get_sequence_value(net));
|
| | | }
|
| | | load_thread = load_data(args);
|
| | |
|
| | | /*
|
| | | int k;
|
| | | for(k = 0; k < l.max_boxes; ++k){
|
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
| | | if(!b.x) break;
|
| | | printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
|
| | | }
|
| | | image im = float_to_image(448, 448, 3, train.X.vals[10]);
|
| | | int k;
|
| | | for(k = 0; k < l.max_boxes; ++k){
|
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5);
|
| | | printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
|
| | | draw_bbox(im, b, 8, 1,0,0);
|
| | | }
|
| | | save_image(im, "truth11");
|
| | | */
|
| | |
|
| | | const double load_time = (what_time_is_it_now() - time);
|
| | | printf("Loaded: %lf seconds", load_time);
|
| | | if (load_time > 0.1 && avg_loss > 0) printf(" - performance bottleneck on CPU or Disk HDD/SSD");
|
| | | printf("\n");
|
| | |
|
| | | time = what_time_is_it_now();
|
| | | float loss = 0;
|
| | | #ifdef GPU
|
| | | if (ngpus == 1) {
|
| | | int wait_key = (dont_show) ? 0 : 1;
|
| | | loss = train_network_waitkey(net, train, wait_key);
|
| | | }
|
| | | else {
|
| | | loss = train_networks(nets, ngpus, train, 4);
|
| | | }
|
| | | #else
|
| | | loss = train_network(net, train);
|
| | | #endif
|
| | | if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan)
|
| | | avg_loss = avg_loss*.9 + loss*.1;
|
| | |
|
| | | const int iteration = get_current_iteration(net);
|
| | | //i = get_current_batch(net);
|
| | |
|
| | | int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions); // calculate mAP for each 4 Epochs
|
| | | calc_map_for_each = fmax(calc_map_for_each, 100);
|
| | | int next_map_calc = iter_map + calc_map_for_each;
|
| | | next_map_calc = fmax(next_map_calc, net.burn_in);
|
| | | //next_map_calc = fmax(next_map_calc, 400);
|
| | | if (calc_map) {
|
| | | printf("\n (next mAP calculation at %d iterations) ", next_map_calc);
|
| | | if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100);
|
| | | }
|
| | |
|
| | | if (net.cudnn_half) {
|
| | | if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in);
|
| | | else fprintf(stderr, "\n Tensor Cores are used.\n");
|
| | | fflush(stderr);
|
| | | }
|
| | | printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images, %f hours left\n", iteration, loss, avg_loss, get_current_rate(net), (what_time_is_it_now() - time), iteration*imgs, avg_time);
|
| | | fflush(stdout);
|
| | |
|
| | | int draw_precision = 0;
|
| | | if (calc_map && (iteration >= next_map_calc || iteration == net.max_batches)) {
|
| | | if (l.random) {
|
| | | printf("Resizing to initial size: %d x %d ", init_w, init_h);
|
| | | args.w = init_w;
|
| | | args.h = init_h;
|
| | | int k;
|
| | | if (net.dynamic_minibatch) {
|
| | | for (k = 0; k < ngpus; ++k) {
|
| | | for (k = 0; k < ngpus; ++k) {
|
| | | nets[k].batch = init_b;
|
| | | int j;
|
| | | for (j = 0; j < nets[k].n; ++j)
|
| | | nets[k].layers[j].batch = init_b;
|
| | | }
|
| | | }
|
| | | net.batch = init_b;
|
| | | imgs = init_b * net.subdivisions * ngpus;
|
| | | args.n = imgs;
|
| | | printf("\n %d x %d (batch = %d) \n", init_w, init_h, init_b);
|
| | | }
|
| | | pthread_join(load_thread, 0);
|
| | | free_data(train);
|
| | | train = buffer;
|
| | | load_thread = load_data(args);
|
| | | for (k = 0; k < ngpus; ++k) {
|
| | | resize_network(nets + k, init_w, init_h);
|
| | | }
|
| | | net = nets[0];
|
| | | }
|
| | |
|
| | | copy_weights_net(net, &net_map);
|
| | |
|
| | | // combine Training and Validation networks
|
| | | //network net_combined = combine_train_valid_networks(net, net_map);
|
| | |
|
| | | iter_map = iteration;
|
| | | mean_average_precision = validate_detector_map(datacfg, cfgfile, weightfile, 0.25, 0.5, 0, net.letter_box, &net_map);// &net_combined);
|
| | | printf("\n mean_average_precision (mAP@0.5) = %f \n", mean_average_precision);
|
| | | if (mean_average_precision > best_map) {
|
| | | best_map = mean_average_precision;
|
| | | printf("New best mAP!\n");
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_best.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | |
|
| | | draw_precision = 1;
|
| | | }
|
| | | time_remaining = ((net.max_batches - iteration) / ngpus)*(what_time_is_it_now() - time + load_time) / 60 / 60;
|
| | | // set initial value, even if resume training from 10000 iteration
|
| | | if (avg_time < 0) avg_time = time_remaining;
|
| | | else avg_time = alpha_time * time_remaining + (1 - alpha_time) * avg_time;
|
| | | #ifdef OPENCV
|
| | | draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, net.max_batches, mean_average_precision, draw_precision, "mAP%", dont_show, mjpeg_port, avg_time);
|
| | | #endif // OPENCV
|
| | |
|
| | | //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) {
|
| | | //if (i % 100 == 0) {
|
| | | if (iteration >= (iter_save + 1000) || iteration % 1000 == 0) {
|
| | | iter_save = iteration;
|
| | | #ifdef GPU
|
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0);
|
| | | #endif
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, iteration);
|
| | | save_weights(net, buff);
|
| | | }
|
| | |
|
| | | if (iteration >= (iter_save_last + 100) || (iteration % 100 == 0 && iteration > 1)) {
|
| | | iter_save_last = iteration;
|
| | | #ifdef GPU
|
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0);
|
| | | #endif
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_last.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | free_data(train);
|
| | | }
|
| | | #ifdef GPU
|
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0);
|
| | | #endif
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | |
|
| | | #ifdef OPENCV
|
| | | release_mat(&img);
|
| | | destroy_all_windows_cv();
|
| | | #endif
|
| | |
|
| | | // free memory
|
| | | pthread_join(load_thread, 0);
|
| | | free_data(buffer);
|
| | |
|
| | | free_load_threads(&args);
|
| | |
|
| | | free(base);
|
| | | free(paths);
|
| | | free_list_contents(plist);
|
| | | free_list(plist);
|
| | |
|
| | | free_list_contents_kvp(options);
|
| | | free_list(options);
|
| | |
|
| | | for (k = 0; k < ngpus; ++k) free_network(nets[k]);
|
| | | free(nets);
|
| | | //free_network(net);
|
| | |
|
| | | if (calc_map) {
|
| | | net_map.n = 0;
|
| | | free_network(net_map);
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | static int get_coco_image_id(char *filename)
|
| | | {
|
| | | char *p = strrchr(filename, '/');
|
| | | char *c = strrchr(filename, '_');
|
| | | if (c) p = c;
|
| | | return atoi(p + 1);
|
| | | }
|
| | |
|
| | | static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
|
| | | {
|
| | | int i, j;
|
| | | //int image_id = get_coco_image_id(image_path);
|
| | | char *p = basecfg(image_path);
|
| | | int image_id = atoi(p);
|
| | | for (i = 0; i < num_boxes; ++i) {
|
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
|
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
|
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
|
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
|
| | |
|
| | | if (xmin < 0) xmin = 0;
|
| | | if (ymin < 0) ymin = 0;
|
| | | if (xmax > w) xmax = w;
|
| | | if (ymax > h) ymax = h;
|
| | |
|
| | | float bx = xmin;
|
| | | float by = ymin;
|
| | | float bw = xmax - xmin;
|
| | | float bh = ymax - ymin;
|
| | |
|
| | | for (j = 0; j < classes; ++j) {
|
| | | if (dets[i].prob[j] > 0) {
|
| | | char buff[1024];
|
| | | sprintf(buff, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
|
| | | fprintf(fp, buff);
|
| | | //printf("%s", buff);
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h)
|
| | | {
|
| | | int i, j;
|
| | | for (i = 0; i < total; ++i) {
|
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1;
|
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1;
|
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1;
|
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1;
|
| | |
|
| | | if (xmin < 1) xmin = 1;
|
| | | if (ymin < 1) ymin = 1;
|
| | | if (xmax > w) xmax = w;
|
| | | if (ymax > h) ymax = h;
|
| | |
|
| | | for (j = 0; j < classes; ++j) {
|
| | | if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
|
| | | xmin, ymin, xmax, ymax);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h)
|
| | | {
|
| | | int i, j;
|
| | | for (i = 0; i < total; ++i) {
|
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
|
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
|
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
|
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
|
| | |
|
| | | if (xmin < 0) xmin = 0;
|
| | | if (ymin < 0) ymin = 0;
|
| | | if (xmax > w) xmax = w;
|
| | | if (ymax > h) ymax = h;
|
| | |
|
| | | for (j = 0; j < classes; ++j) {
|
| | | int myclass = j;
|
| | | if (dets[i].prob[myclass] > 0) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[myclass],
|
| | | xmin, ymin, xmax, ymax);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | static void print_kitti_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h, char *outfile, char *prefix)
|
| | | {
|
| | | char *kitti_ids[] = { "car", "pedestrian", "cyclist" };
|
| | | FILE *fpd = 0;
|
| | | char buffd[1024];
|
| | | snprintf(buffd, 1024, "%s/%s/data/%s.txt", prefix, outfile, id);
|
| | |
|
| | | fpd = fopen(buffd, "w");
|
| | | int i, j;
|
| | | for (i = 0; i < total; ++i)
|
| | | {
|
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
|
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
|
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
|
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
|
| | |
|
| | | if (xmin < 0) xmin = 0;
|
| | | if (ymin < 0) ymin = 0;
|
| | | if (xmax > w) xmax = w;
|
| | | if (ymax > h) ymax = h;
|
| | |
|
| | | for (j = 0; j < classes; ++j)
|
| | | {
|
| | | //if (dets[i].prob[j]) fprintf(fpd, "%s 0 0 0 %f %f %f %f -1 -1 -1 -1 0 0 0 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]);
|
| | | if (dets[i].prob[j]) fprintf(fpd, "%s -1 -1 -10 %f %f %f %f -1 -1 -1 -1000 -1000 -1000 -10 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]);
|
| | | }
|
| | | }
|
| | | fclose(fpd);
|
| | | }
|
| | |
|
| | | static void eliminate_bdd(char *buf, char *a)
|
| | | {
|
| | | int n = 0;
|
| | | int i, k;
|
| | | for (i = 0; buf[i] != '\0'; i++)
|
| | | {
|
| | | if (buf[i] == a[n])
|
| | | {
|
| | | k = i;
|
| | | while (buf[i] == a[n])
|
| | | {
|
| | | if (a[++n] == '\0')
|
| | | {
|
| | | for (k; buf[k + n] != '\0'; k++)
|
| | | {
|
| | | buf[k] = buf[k + n];
|
| | | }
|
| | | buf[k] = '\0';
|
| | | break;
|
| | | }
|
| | | i++;
|
| | | }
|
| | | n = 0; i--;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | static void get_bdd_image_id(char *filename)
|
| | | {
|
| | | char *p = strrchr(filename, '/');
|
| | | eliminate_bdd(p, ".jpg");
|
| | | eliminate_bdd(p, "/");
|
| | | strcpy(filename, p);
|
| | | }
|
| | |
|
| | | static void print_bdd_detections(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h)
|
| | | {
|
| | | char *bdd_ids[] = { "bike" , "bus" , "car" , "motor" ,"person", "rider", "traffic light", "traffic sign", "train", "truck" };
|
| | | get_bdd_image_id(image_path);
|
| | | int i, j;
|
| | |
|
| | | for (i = 0; i < num_boxes; ++i)
|
| | | {
|
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.;
|
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.;
|
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.;
|
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.;
|
| | |
|
| | | if (xmin < 0) xmin = 0;
|
| | | if (ymin < 0) ymin = 0;
|
| | | if (xmax > w) xmax = w;
|
| | | if (ymax > h) ymax = h;
|
| | |
|
| | | float bx1 = xmin;
|
| | | float by1 = ymin;
|
| | | float bx2 = xmax;
|
| | | float by2 = ymax;
|
| | |
|
| | | for (j = 0; j < classes; ++j)
|
| | | {
|
| | | if (dets[i].prob[j])
|
| | | {
|
| | | fprintf(fp, "\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f, %f, %f, %f],\n\t\t\"score\":%f\n\t},\n", image_path, bdd_ids[j], bx1, by1, bx2, by2, dets[i].prob[j]);
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | int j;
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *valid_images = option_find_str(options, "valid", "data/train.list");
|
| | | char *name_list = option_find_str(options, "names", "data/names.list");
|
| | | char *prefix = option_find_str(options, "results", "results");
|
| | | char **names = get_labels(name_list);
|
| | | char *mapf = option_find_str(options, "map", 0);
|
| | | int *map = 0;
|
| | | if (mapf) map = read_map(mapf);
|
| | |
|
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | //set_batch_network(&net, 1);
|
| | | fuse_conv_batchnorm(net);
|
| | | calculate_binary_weights(net);
|
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | srand(time(0));
|
| | |
|
| | | list *plist = get_paths(valid_images);
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | layer l = net.layers[net.n - 1];
|
| | | int classes = l.classes;
|
| | |
|
| | | char buff[1024];
|
| | | char *type = option_find_str(options, "eval", "voc");
|
| | | FILE *fp = 0;
|
| | | FILE **fps = 0;
|
| | | int coco = 0;
|
| | | int imagenet = 0;
|
| | | int bdd = 0;
|
| | | int kitti = 0;
|
| | |
|
| | | if (0 == strcmp(type, "coco")) {
|
| | | if (!outfile) outfile = "coco_results";
|
| | | snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
|
| | | fp = fopen(buff, "w");
|
| | | fprintf(fp, "[\n");
|
| | | coco = 1;
|
| | | }
|
| | | else if (0 == strcmp(type, "bdd")) {
|
| | | if (!outfile) outfile = "bdd_results";
|
| | | snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
|
| | | fp = fopen(buff, "w");
|
| | | fprintf(fp, "[\n");
|
| | | bdd = 1;
|
| | | }
|
| | | else if (0 == strcmp(type, "kitti")) {
|
| | | char buff2[1024];
|
| | | if (!outfile) outfile = "kitti_results";
|
| | | printf("%s\n", outfile);
|
| | | snprintf(buff, 1024, "%s/%s", prefix, outfile);
|
| | | int mkd = make_directory(buff, 0777);
|
| | | snprintf(buff2, 1024, "%s/%s/data", prefix, outfile);
|
| | | int mkd2 = make_directory(buff2, 0777);
|
| | | kitti = 1;
|
| | | }
|
| | | else if (0 == strcmp(type, "imagenet")) {
|
| | | if (!outfile) outfile = "imagenet-detection";
|
| | | snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
|
| | | fp = fopen(buff, "w");
|
| | | imagenet = 1;
|
| | | classes = 200;
|
| | | }
|
| | | else {
|
| | | if (!outfile) outfile = "comp4_det_test_";
|
| | | fps = (FILE**) xcalloc(classes, sizeof(FILE *));
|
| | | for (j = 0; j < classes; ++j) {
|
| | | snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
|
| | | fps[j] = fopen(buff, "w");
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | int m = plist->size;
|
| | | int i = 0;
|
| | | int t;
|
| | |
|
| | | float thresh = .001;
|
| | | float nms = .45;
|
| | |
|
| | | int nthreads = 4;
|
| | | if (m < 4) nthreads = m;
|
| | | image* val = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* buf = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
|
| | | pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
|
| | |
|
| | | load_args args = { 0 };
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | | args.c = net.c;
|
| | | args.type = IMAGE_DATA;
|
| | | const int letter_box = net.letter_box;
|
| | | if (letter_box) args.type = LETTERBOX_DATA;
|
| | |
|
| | | for (t = 0; t < nthreads; ++t) {
|
| | | args.path = paths[i + t];
|
| | | args.im = &buf[t];
|
| | | args.resized = &buf_resized[t];
|
| | | thr[t] = load_data_in_thread(args);
|
| | | }
|
| | | time_t start = time(0);
|
| | | for (i = nthreads; i < m + nthreads; i += nthreads) {
|
| | | fprintf(stderr, "%d\n", i);
|
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
|
| | | pthread_join(thr[t], 0);
|
| | | val[t] = buf[t];
|
| | | val_resized[t] = buf_resized[t];
|
| | | }
|
| | | for (t = 0; t < nthreads && i + t < m; ++t) {
|
| | | args.path = paths[i + t];
|
| | | args.im = &buf[t];
|
| | | args.resized = &buf_resized[t];
|
| | | thr[t] = load_data_in_thread(args);
|
| | | }
|
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
|
| | | char *path = paths[i + t - nthreads];
|
| | | char *id = basecfg(path);
|
| | | float *X = val_resized[t].data;
|
| | | network_predict(net, X);
|
| | | int w = val[t].w;
|
| | | int h = val[t].h;
|
| | | int nboxes = 0;
|
| | | detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letter_box);
|
| | | if (nms) {
|
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
|
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
|
| | | }
|
| | |
|
| | | if (coco) {
|
| | | print_cocos(fp, path, dets, nboxes, classes, w, h);
|
| | | }
|
| | | else if (imagenet) {
|
| | | print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h);
|
| | | }
|
| | | else if (bdd) {
|
| | | print_bdd_detections(fp, path, dets, nboxes, classes, w, h);
|
| | | }
|
| | | else if (kitti) {
|
| | | print_kitti_detections(fps, id, dets, nboxes, classes, w, h, outfile, prefix);
|
| | | }
|
| | | else {
|
| | | print_detector_detections(fps, id, dets, nboxes, classes, w, h);
|
| | | }
|
| | |
|
| | | free_detections(dets, nboxes);
|
| | | free(id);
|
| | | free_image(val[t]);
|
| | | free_image(val_resized[t]);
|
| | | }
|
| | | }
|
| | | if (fps) {
|
| | | for (j = 0; j < classes; ++j) {
|
| | | fclose(fps[j]);
|
| | | }
|
| | | free(fps);
|
| | | }
|
| | | if (coco) {
|
| | | #ifdef WIN32
|
| | | fseek(fp, -3, SEEK_CUR);
|
| | | #else
|
| | | fseek(fp, -2, SEEK_CUR);
|
| | | #endif
|
| | | fprintf(fp, "\n]\n");
|
| | | }
|
| | |
|
| | | if (bdd) {
|
| | | #ifdef WIN32
|
| | | fseek(fp, -3, SEEK_CUR);
|
| | | #else
|
| | | fseek(fp, -2, SEEK_CUR);
|
| | | #endif
|
| | | fprintf(fp, "\n]\n");
|
| | | fclose(fp);
|
| | | }
|
| | |
|
| | | if (fp) fclose(fp);
|
| | |
|
| | | if (val) free(val);
|
| | | if (val_resized) free(val_resized);
|
| | | if (thr) free(thr);
|
| | | if (buf) free(buf);
|
| | | if (buf_resized) free(buf_resized);
|
| | |
|
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start);
|
| | | }
|
| | |
|
| | | void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
|
| | | {
|
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | //set_batch_network(&net, 1);
|
| | | fuse_conv_batchnorm(net);
|
| | | srand(time(0));
|
| | |
|
| | | //list *plist = get_paths("data/coco_val_5k.list");
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt");
|
| | | list *plist = get_paths(valid_images);
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | //layer l = net.layers[net.n - 1];
|
| | |
|
| | | int j, k;
|
| | |
|
| | | int m = plist->size;
|
| | | int i = 0;
|
| | |
|
| | | float thresh = .001;
|
| | | float iou_thresh = .5;
|
| | | float nms = .4;
|
| | |
|
| | | int total = 0;
|
| | | int correct = 0;
|
| | | int proposals = 0;
|
| | | float avg_iou = 0;
|
| | |
|
| | | for (i = 0; i < m; ++i) {
|
| | | char *path = paths[i];
|
| | | image orig = load_image(path, 0, 0, net.c);
|
| | | image sized = resize_image(orig, net.w, net.h);
|
| | | char *id = basecfg(path);
|
| | | network_predict(net, sized.data);
|
| | | int nboxes = 0;
|
| | | int letterbox = 0;
|
| | | detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox);
|
| | | if (nms) do_nms_obj(dets, nboxes, 1, nms);
|
| | |
|
| | | char labelpath[4096];
|
| | | replace_image_to_label(path, labelpath);
|
| | |
|
| | | int num_labels = 0;
|
| | | box_label *truth = read_boxes(labelpath, &num_labels);
|
| | | for (k = 0; k < nboxes; ++k) {
|
| | | if (dets[k].objectness > thresh) {
|
| | | ++proposals;
|
| | | }
|
| | | }
|
| | | for (j = 0; j < num_labels; ++j) {
|
| | | ++total;
|
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
|
| | | float best_iou = 0;
|
| | | for (k = 0; k < nboxes; ++k) {
|
| | | float iou = box_iou(dets[k].bbox, t);
|
| | | if (dets[k].objectness > thresh && iou > best_iou) {
|
| | | best_iou = iou;
|
| | | }
|
| | | }
|
| | | avg_iou += best_iou;
|
| | | if (best_iou > iou_thresh) {
|
| | | ++correct;
|
| | | }
|
| | | }
|
| | | //fprintf(stderr, " %s - %s - ", paths[i], labelpath);
|
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
|
| | | free(id);
|
| | | free_image(orig);
|
| | | free_image(sized);
|
| | | }
|
| | | }
|
| | |
|
| | | typedef struct {
|
| | | box b;
|
| | | float p;
|
| | | int class_id;
|
| | | int image_index;
|
| | | int truth_flag;
|
| | | int unique_truth_index;
|
| | | } box_prob;
|
| | |
|
| | | int detections_comparator(const void *pa, const void *pb)
|
| | | {
|
| | | box_prob a = *(const box_prob *)pa;
|
| | | box_prob b = *(const box_prob *)pb;
|
| | | float diff = a.p - b.p;
|
| | | if (diff < 0) return 1;
|
| | | else if (diff > 0) return -1;
|
| | | return 0;
|
| | | }
|
| | |
|
| | | float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net)
|
| | | {
|
| | | int j;
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt");
|
| | | char *difficult_valid_images = option_find_str(options, "difficult", NULL);
|
| | | char *name_list = option_find_str(options, "names", "data/names.list");
|
| | | int names_size = 0;
|
| | | char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
|
| | | //char *mapf = option_find_str(options, "map", 0);
|
| | | //int *map = 0;
|
| | | //if (mapf) map = read_map(mapf);
|
| | | FILE* reinforcement_fd = NULL;
|
| | |
|
| | | network net;
|
| | | //int initial_batch;
|
| | | if (existing_net) {
|
| | | char *train_images = option_find_str(options, "train", "data/train.txt");
|
| | | valid_images = option_find_str(options, "valid", train_images);
|
| | | net = *existing_net;
|
| | | remember_network_recurrent_state(*existing_net);
|
| | | free_network_recurrent_state(*existing_net);
|
| | | }
|
| | | else {
|
| | | net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | //set_batch_network(&net, 1);
|
| | | fuse_conv_batchnorm(net);
|
| | | calculate_binary_weights(net);
|
| | | }
|
| | | if (net.layers[net.n - 1].classes != names_size) {
|
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
|
| | | name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
|
| | | getchar();
|
| | | }
|
| | | srand(time(0));
|
| | | printf("\n calculation mAP (mean average precision)...\n");
|
| | |
|
| | | list *plist = get_paths(valid_images);
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | char **paths_dif = NULL;
|
| | | if (difficult_valid_images) {
|
| | | list *plist_dif = get_paths(difficult_valid_images);
|
| | | paths_dif = (char **)list_to_array(plist_dif);
|
| | | }
|
| | |
|
| | |
|
| | | layer l = net.layers[net.n - 1];
|
| | | int classes = l.classes;
|
| | |
|
| | | int m = plist->size;
|
| | | int i = 0;
|
| | | int t;
|
| | |
|
| | | const float thresh = .005;
|
| | | const float nms = .45;
|
| | | //const float iou_thresh = 0.5;
|
| | |
|
| | | int nthreads = 4;
|
| | | if (m < 4) nthreads = m;
|
| | | image* val = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* buf = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
|
| | | pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
|
| | |
|
| | | load_args args = { 0 };
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | | args.c = net.c;
|
| | | if (letter_box) args.type = LETTERBOX_DATA;
|
| | | else args.type = IMAGE_DATA;
|
| | |
|
| | | //const float thresh_calc_avg_iou = 0.24;
|
| | | float avg_iou = 0;
|
| | | int tp_for_thresh = 0;
|
| | | int fp_for_thresh = 0;
|
| | |
|
| | | box_prob* detections = (box_prob*)xcalloc(1, sizeof(box_prob));
|
| | | int detections_count = 0;
|
| | | int unique_truth_count = 0;
|
| | |
|
| | | int* truth_classes_count = (int*)xcalloc(classes, sizeof(int));
|
| | |
|
| | | // For multi-class precision and recall computation
|
| | | float *avg_iou_per_class = (float*)xcalloc(classes, sizeof(float));
|
| | | int *tp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int));
|
| | | int *fp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int));
|
| | |
|
| | | for (t = 0; t < nthreads; ++t) {
|
| | | args.path = paths[i + t];
|
| | | args.im = &buf[t];
|
| | | args.resized = &buf_resized[t];
|
| | | thr[t] = load_data_in_thread(args);
|
| | | }
|
| | | time_t start = time(0);
|
| | | for (i = nthreads; i < m + nthreads; i += nthreads) {
|
| | | fprintf(stderr, "\r%d", i);
|
| | | for (t = 0; t < nthreads && (i + t - nthreads) < m; ++t) {
|
| | | pthread_join(thr[t], 0);
|
| | | val[t] = buf[t];
|
| | | val_resized[t] = buf_resized[t];
|
| | | }
|
| | | for (t = 0; t < nthreads && (i + t) < m; ++t) {
|
| | | args.path = paths[i + t];
|
| | | args.im = &buf[t];
|
| | | args.resized = &buf_resized[t];
|
| | | thr[t] = load_data_in_thread(args);
|
| | | }
|
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
|
| | | const int image_index = i + t - nthreads;
|
| | | char *path = paths[image_index];
|
| | | char *id = basecfg(path);
|
| | | float *X = val_resized[t].data;
|
| | | network_predict(net, X);
|
| | |
|
| | | int nboxes = 0;
|
| | | float hier_thresh = 0;
|
| | | detection *dets;
|
| | | if (args.type == LETTERBOX_DATA) {
|
| | | dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
|
| | | }
|
| | | else {
|
| | | dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letter_box);
|
| | | }
|
| | | //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); // for letter_box=1
|
| | | if (nms) {
|
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
|
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
|
| | | }
|
| | | //if (nms) do_nms_obj(dets, nboxes, l.classes, nms);
|
| | |
|
| | | char labelpath[4096];
|
| | | replace_image_to_label(path, labelpath);
|
| | | int num_labels = 0;
|
| | | box_label *truth = read_boxes(labelpath, &num_labels);
|
| | | int j;
|
| | | for (j = 0; j < num_labels; ++j) {
|
| | | truth_classes_count[truth[j].id]++;
|
| | | }
|
| | |
|
| | | // difficult
|
| | | box_label *truth_dif = NULL;
|
| | | int num_labels_dif = 0;
|
| | | if (paths_dif)
|
| | | {
|
| | | char *path_dif = paths_dif[image_index];
|
| | |
|
| | | char labelpath_dif[4096];
|
| | | replace_image_to_label(path_dif, labelpath_dif);
|
| | |
|
| | | truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
|
| | | }
|
| | |
|
| | | const int checkpoint_detections_count = detections_count;
|
| | |
|
| | | int i;
|
| | | for (i = 0; i < nboxes; ++i) {
|
| | |
|
| | | int class_id;
|
| | | for (class_id = 0; class_id < classes; ++class_id) {
|
| | | float prob = dets[i].prob[class_id];
|
| | | if (prob > 0) {
|
| | | detections_count++;
|
| | | detections = (box_prob*)xrealloc(detections, detections_count * sizeof(box_prob));
|
| | | detections[detections_count - 1].b = dets[i].bbox;
|
| | | detections[detections_count - 1].p = prob;
|
| | | detections[detections_count - 1].image_index = image_index;
|
| | | detections[detections_count - 1].class_id = class_id;
|
| | | detections[detections_count - 1].truth_flag = 0;
|
| | | detections[detections_count - 1].unique_truth_index = -1;
|
| | |
|
| | | int truth_index = -1;
|
| | | float max_iou = 0;
|
| | | for (j = 0; j < num_labels; ++j)
|
| | | {
|
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
|
| | | //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
|
| | | // box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
|
| | | float current_iou = box_iou(dets[i].bbox, t);
|
| | | if (current_iou > iou_thresh && class_id == truth[j].id) {
|
| | | if (current_iou > max_iou) {
|
| | | max_iou = current_iou;
|
| | | truth_index = unique_truth_count + j;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | // best IoU
|
| | | if (truth_index > -1) {
|
| | | detections[detections_count - 1].truth_flag = 1;
|
| | | detections[detections_count - 1].unique_truth_index = truth_index;
|
| | | }
|
| | | else {
|
| | | // if object is difficult then remove detection
|
| | | for (j = 0; j < num_labels_dif; ++j) {
|
| | | box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
|
| | | float current_iou = box_iou(dets[i].bbox, t);
|
| | | if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
|
| | | --detections_count;
|
| | | break;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | // calc avg IoU, true-positives, false-positives for required Threshold
|
| | | if (prob > thresh_calc_avg_iou) {
|
| | | int z, found = 0;
|
| | | for (z = checkpoint_detections_count; z < detections_count - 1; ++z) {
|
| | | if (detections[z].unique_truth_index == truth_index) {
|
| | | found = 1; break;
|
| | | }
|
| | | }
|
| | |
|
| | | if (truth_index > -1 && found == 0) {
|
| | | avg_iou += max_iou;
|
| | | ++tp_for_thresh;
|
| | | avg_iou_per_class[class_id] += max_iou;
|
| | | tp_for_thresh_per_class[class_id]++;
|
| | | }
|
| | | else{
|
| | | fp_for_thresh++;
|
| | | fp_for_thresh_per_class[class_id]++;
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | unique_truth_count += num_labels;
|
| | |
|
| | | //static int previous_errors = 0;
|
| | | //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh);
|
| | | //int errors_in_this_image = total_errors - previous_errors;
|
| | | //previous_errors = total_errors;
|
| | | //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb");
|
| | | //char buff[1000];
|
| | | //sprintf(buff, "%s\n", path);
|
| | | //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd);
|
| | |
|
| | | free_detections(dets, nboxes);
|
| | | free(id);
|
| | | free_image(val[t]);
|
| | | free_image(val_resized[t]);
|
| | | }
|
| | | }
|
| | |
|
| | | //for (t = 0; t < nthreads; ++t) {
|
| | | // pthread_join(thr[t], 0);
|
| | | //}
|
| | |
|
| | | if ((tp_for_thresh + fp_for_thresh) > 0)
|
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
|
| | |
|
| | | int class_id;
|
| | | for(class_id = 0; class_id < classes; class_id++){
|
| | | if ((tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]) > 0)
|
| | | avg_iou_per_class[class_id] = avg_iou_per_class[class_id] / (tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]);
|
| | | }
|
| | |
|
| | | // SORT(detections)
|
| | | qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
|
| | |
|
| | | typedef struct {
|
| | | double precision;
|
| | | double recall;
|
| | | int tp, fp, fn;
|
| | | } pr_t;
|
| | |
|
| | | // for PR-curve
|
| | | pr_t** pr = (pr_t**)xcalloc(classes, sizeof(pr_t*));
|
| | | for (i = 0; i < classes; ++i) {
|
| | | pr[i] = (pr_t*)xcalloc(detections_count, sizeof(pr_t));
|
| | | }
|
| | | printf("\n detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count);
|
| | |
|
| | |
|
| | | int* detection_per_class_count = (int*)xcalloc(classes, sizeof(int));
|
| | | for (j = 0; j < detections_count; ++j) {
|
| | | detection_per_class_count[detections[j].class_id]++;
|
| | | }
|
| | |
|
| | | int* truth_flags = (int*)xcalloc(unique_truth_count, sizeof(int));
|
| | |
|
| | | int rank;
|
| | | for (rank = 0; rank < detections_count; ++rank) {
|
| | | if (rank % 100 == 0)
|
| | | printf(" rank = %d of ranks = %d \r", rank, detections_count);
|
| | |
|
| | | if (rank > 0) {
|
| | | int class_id;
|
| | | for (class_id = 0; class_id < classes; ++class_id) {
|
| | | pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
|
| | | pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
|
| | | }
|
| | | }
|
| | |
|
| | | box_prob d = detections[rank];
|
| | | // if (detected && isn't detected before)
|
| | | if (d.truth_flag == 1) {
|
| | | if (truth_flags[d.unique_truth_index] == 0)
|
| | | {
|
| | | truth_flags[d.unique_truth_index] = 1;
|
| | | pr[d.class_id][rank].tp++; // true-positive
|
| | | } else
|
| | | pr[d.class_id][rank].fp++;
|
| | | }
|
| | | else {
|
| | | pr[d.class_id][rank].fp++; // false-positive
|
| | | }
|
| | |
|
| | | for (i = 0; i < classes; ++i)
|
| | | {
|
| | | const int tp = pr[i][rank].tp;
|
| | | const int fp = pr[i][rank].fp;
|
| | | const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive
|
| | | pr[i][rank].fn = fn;
|
| | |
|
| | | if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
|
| | | else pr[i][rank].precision = 0;
|
| | |
|
| | | if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
|
| | | else pr[i][rank].recall = 0;
|
| | |
|
| | | if (rank == (detections_count - 1) && detection_per_class_count[i] != (tp + fp)) { // check for last rank
|
| | | printf(" class_id: %d - detections = %d, tp+fp = %d, tp = %d, fp = %d \n", i, detection_per_class_count[i], tp+fp, tp, fp);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | free(truth_flags);
|
| | |
|
| | |
|
| | | double mean_average_precision = 0;
|
| | |
|
| | | for (i = 0; i < classes; ++i) {
|
| | | double avg_precision = 0;
|
| | |
|
| | | // MS COCO - uses 101-Recall-points on PR-chart.
|
| | | // PascalVOC2007 - uses 11-Recall-points on PR-chart.
|
| | | // PascalVOC2010-2012 - uses Area-Under-Curve on PR-chart.
|
| | | // ImageNet - uses Area-Under-Curve on PR-chart.
|
| | |
|
| | | // correct mAP calculation: ImageNet, PascalVOC 2010-2012
|
| | | if (map_points == 0)
|
| | | {
|
| | | double last_recall = pr[i][detections_count - 1].recall;
|
| | | double last_precision = pr[i][detections_count - 1].precision;
|
| | | for (rank = detections_count - 2; rank >= 0; --rank)
|
| | | {
|
| | | double delta_recall = last_recall - pr[i][rank].recall;
|
| | | last_recall = pr[i][rank].recall;
|
| | |
|
| | | if (pr[i][rank].precision > last_precision) {
|
| | | last_precision = pr[i][rank].precision;
|
| | | }
|
| | |
|
| | | avg_precision += delta_recall * last_precision;
|
| | | }
|
| | | }
|
| | | // MSCOCO - 101 Recall-points, PascalVOC - 11 Recall-points
|
| | | else
|
| | | {
|
| | | int point;
|
| | | for (point = 0; point < map_points; ++point) {
|
| | | double cur_recall = point * 1.0 / (map_points-1);
|
| | | double cur_precision = 0;
|
| | | for (rank = 0; rank < detections_count; ++rank)
|
| | | {
|
| | | if (pr[i][rank].recall >= cur_recall) { // > or >=
|
| | | if (pr[i][rank].precision > cur_precision) {
|
| | | cur_precision = pr[i][rank].precision;
|
| | | }
|
| | | }
|
| | | }
|
| | | //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
|
| | |
|
| | | avg_precision += cur_precision;
|
| | | }
|
| | | avg_precision = avg_precision / map_points;
|
| | | }
|
| | |
|
| | | printf("class_id = %d, name = %s, ap = %2.2f%% \t (TP = %d, FP = %d) \n",
|
| | | i, names[i], avg_precision * 100, tp_for_thresh_per_class[i], fp_for_thresh_per_class[i]);
|
| | |
|
| | | float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]);
|
| | | float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i]));
|
| | | //printf("Precision = %1.2f, Recall = %1.2f, avg IOU = %2.2f%% \n\n", class_precision, class_recall, avg_iou_per_class[i]);
|
| | |
|
| | | mean_average_precision += avg_precision;
|
| | | }
|
| | |
|
| | | const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
|
| | | const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
|
| | | const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
|
| | | printf("\n for conf_thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
|
| | | thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
|
| | |
|
| | | printf(" for conf_thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n",
|
| | | thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
|
| | |
|
| | | mean_average_precision = mean_average_precision / classes;
|
| | | printf("\n IoU threshold = %2.0f %%, ", iou_thresh * 100);
|
| | | if (map_points) printf("used %d Recall-points \n", map_points);
|
| | | else printf("used Area-Under-Curve for each unique Recall \n");
|
| | |
|
| | | printf(" mean average precision (mAP@%0.2f) = %f, or %2.2f %% \n", iou_thresh, mean_average_precision, mean_average_precision * 100);
|
| | |
|
| | | for (i = 0; i < classes; ++i) {
|
| | | free(pr[i]);
|
| | | }
|
| | | free(pr);
|
| | | free(detections);
|
| | | free(truth_classes_count);
|
| | | free(detection_per_class_count);
|
| | |
|
| | | free(avg_iou_per_class);
|
| | | free(tp_for_thresh_per_class);
|
| | | free(fp_for_thresh_per_class);
|
| | |
|
| | | fprintf(stderr, "Total Detection Time: %d Seconds\n", (int)(time(0) - start));
|
| | | printf("\nSet -points flag:\n");
|
| | | printf(" `-points 101` for MS COCO \n");
|
| | | printf(" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n");
|
| | | printf(" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n");
|
| | | if (reinforcement_fd != NULL) fclose(reinforcement_fd);
|
| | |
|
| | | // free memory
|
| | | free_ptrs((void**)names, net.layers[net.n - 1].classes);
|
| | | free_list_contents_kvp(options);
|
| | | free_list(options);
|
| | |
|
| | | if (existing_net) {
|
| | | //set_batch_network(&net, initial_batch);
|
| | | //free_network_recurrent_state(*existing_net);
|
| | | restore_network_recurrent_state(*existing_net);
|
| | | //randomize_network_recurrent_state(*existing_net);
|
| | | }
|
| | | else {
|
| | | free_network(net);
|
| | | }
|
| | | if (val) free(val);
|
| | | if (val_resized) free(val_resized);
|
| | | if (thr) free(thr);
|
| | | if (buf) free(buf);
|
| | | if (buf_resized) free(buf_resized);
|
| | |
|
| | | return mean_average_precision;
|
| | | }
|
| | |
|
| | | typedef struct {
|
| | | float w, h;
|
| | | } anchors_t;
|
| | |
|
| | | int anchors_comparator(const void *pa, const void *pb)
|
| | | {
|
| | | anchors_t a = *(const anchors_t *)pa;
|
| | | anchors_t b = *(const anchors_t *)pb;
|
| | | float diff = b.w*b.h - a.w*a.h;
|
| | | if (diff < 0) return 1;
|
| | | else if (diff > 0) return -1;
|
| | | return 0;
|
| | | }
|
| | |
|
| | | int anchors_data_comparator(const float **pa, const float **pb)
|
| | | {
|
| | | float *a = (float *)*pa;
|
| | | float *b = (float *)*pb;
|
| | | float diff = b[0] * b[1] - a[0] * a[1];
|
| | | if (diff < 0) return 1;
|
| | | else if (diff > 0) return -1;
|
| | | return 0;
|
| | | }
|
| | |
|
| | |
|
| | | void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show)
|
| | | {
|
| | | printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height);
|
| | | if (width < 0 || height < 0) {
|
| | | printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n");
|
| | | printf("Error: set width and height \n");
|
| | | return;
|
| | | }
|
| | |
|
| | | //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
|
| | | float* rel_width_height_array = (float*)xcalloc(1000, sizeof(float));
|
| | |
|
| | |
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *train_images = option_find_str(options, "train", "data/train.list");
|
| | | list *plist = get_paths(train_images);
|
| | | int number_of_images = plist->size;
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | int classes = option_find_int(options, "classes", 1);
|
| | | int* counter_per_class = (int*)xcalloc(classes, sizeof(int));
|
| | |
|
| | | srand(time(0));
|
| | | int number_of_boxes = 0;
|
| | | printf(" read labels from %d images \n", number_of_images);
|
| | |
|
| | | int i, j;
|
| | | for (i = 0; i < number_of_images; ++i) {
|
| | | char *path = paths[i];
|
| | | char labelpath[4096];
|
| | | replace_image_to_label(path, labelpath);
|
| | |
|
| | | int num_labels = 0;
|
| | | box_label *truth = read_boxes(labelpath, &num_labels);
|
| | | //printf(" new path: %s \n", labelpath);
|
| | | char *buff = (char*)xcalloc(6144, sizeof(char));
|
| | | for (j = 0; j < num_labels; ++j)
|
| | | {
|
| | | if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 ||
|
| | | truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0)
|
| | | {
|
| | | printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n",
|
| | | labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
|
| | | sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list",
|
| | | labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h);
|
| | | system(buff);
|
| | | if (check_mistakes) getchar();
|
| | | }
|
| | | if (truth[j].id >= classes) {
|
| | | classes = truth[j].id + 1;
|
| | | counter_per_class = (int*)xrealloc(counter_per_class, classes * sizeof(int));
|
| | | }
|
| | | counter_per_class[truth[j].id]++;
|
| | |
|
| | | number_of_boxes++;
|
| | | rel_width_height_array = (float*)xrealloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
|
| | |
|
| | | rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width;
|
| | | rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height;
|
| | | printf("\r loaded \t image: %d \t box: %d", i + 1, number_of_boxes);
|
| | | }
|
| | | free(buff);
|
| | | }
|
| | | printf("\n all loaded. \n");
|
| | | printf("\n calculating k-means++ ...");
|
| | |
|
| | | matrix boxes_data;
|
| | | model anchors_data;
|
| | | boxes_data = make_matrix(number_of_boxes, 2);
|
| | |
|
| | | printf("\n");
|
| | | for (i = 0; i < number_of_boxes; ++i) {
|
| | | boxes_data.vals[i][0] = rel_width_height_array[i * 2];
|
| | | boxes_data.vals[i][1] = rel_width_height_array[i * 2 + 1];
|
| | | //if (w > 410 || h > 410) printf("i:%d, w = %f, h = %f \n", i, w, h);
|
| | | }
|
| | |
|
| | | // Is used: distance(box, centroid) = 1 - IoU(box, centroid)
|
| | |
|
| | | // K-means
|
| | | anchors_data = do_kmeans(boxes_data, num_of_clusters);
|
| | |
|
| | | qsort((void*)anchors_data.centers.vals, num_of_clusters, 2 * sizeof(float), (__compar_fn_t)anchors_data_comparator);
|
| | |
|
| | | //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
|
| | | //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
|
| | |
|
| | | printf("\n");
|
| | | float avg_iou = 0;
|
| | | for (i = 0; i < number_of_boxes; ++i) {
|
| | | float box_w = rel_width_height_array[i * 2]; //points->data.fl[i * 2];
|
| | | float box_h = rel_width_height_array[i * 2 + 1]; //points->data.fl[i * 2 + 1];
|
| | | //int cluster_idx = labels->data.i[i];
|
| | | int cluster_idx = 0;
|
| | | float min_dist = FLT_MAX;
|
| | | float best_iou = 0;
|
| | | for (j = 0; j < num_of_clusters; ++j) {
|
| | | float anchor_w = anchors_data.centers.vals[j][0]; // centers->data.fl[j * 2];
|
| | | float anchor_h = anchors_data.centers.vals[j][1]; // centers->data.fl[j * 2 + 1];
|
| | | float min_w = (box_w < anchor_w) ? box_w : anchor_w;
|
| | | float min_h = (box_h < anchor_h) ? box_h : anchor_h;
|
| | | float box_intersect = min_w*min_h;
|
| | | float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
|
| | | float iou = box_intersect / box_union;
|
| | | float distance = 1 - iou;
|
| | | if (distance < min_dist) {
|
| | | min_dist = distance;
|
| | | cluster_idx = j;
|
| | | best_iou = iou;
|
| | | }
|
| | | }
|
| | |
|
| | | float anchor_w = anchors_data.centers.vals[cluster_idx][0]; //centers->data.fl[cluster_idx * 2];
|
| | | float anchor_h = anchors_data.centers.vals[cluster_idx][1]; //centers->data.fl[cluster_idx * 2 + 1];
|
| | | if (best_iou > 1 || best_iou < 0) { // || box_w > width || box_h > height) {
|
| | | printf(" Wrong label: i = %d, box_w = %f, box_h = %f, anchor_w = %f, anchor_h = %f, iou = %f \n",
|
| | | i, box_w, box_h, anchor_w, anchor_h, best_iou);
|
| | | }
|
| | | else avg_iou += best_iou;
|
| | | }
|
| | |
|
| | | char buff[1024];
|
| | | FILE* fwc = fopen("counters_per_class.txt", "wb");
|
| | | if (fwc) {
|
| | | sprintf(buff, "counters_per_class = ");
|
| | | printf("\n%s", buff);
|
| | | fwrite(buff, sizeof(char), strlen(buff), fwc);
|
| | | for (i = 0; i < classes; ++i) {
|
| | | sprintf(buff, "%d", counter_per_class[i]);
|
| | | printf("%s", buff);
|
| | | fwrite(buff, sizeof(char), strlen(buff), fwc);
|
| | | if (i < classes - 1) {
|
| | | fwrite(", ", sizeof(char), 2, fwc);
|
| | | printf(", ");
|
| | | }
|
| | | }
|
| | | printf("\n");
|
| | | fclose(fwc);
|
| | | }
|
| | | else {
|
| | | printf(" Error: file counters_per_class.txt can't be open \n");
|
| | | }
|
| | |
|
| | | avg_iou = 100 * avg_iou / number_of_boxes;
|
| | | printf("\n avg IoU = %2.2f %% \n", avg_iou);
|
| | |
|
| | |
|
| | | FILE* fw = fopen("anchors.txt", "wb");
|
| | | if (fw) {
|
| | | printf("\nSaving anchors to the file: anchors.txt \n");
|
| | | printf("anchors = ");
|
| | | for (i = 0; i < num_of_clusters; ++i) {
|
| | | float anchor_w = anchors_data.centers.vals[i][0]; //centers->data.fl[i * 2];
|
| | | float anchor_h = anchors_data.centers.vals[i][1]; //centers->data.fl[i * 2 + 1];
|
| | | if (width > 32) sprintf(buff, "%3.0f,%3.0f", anchor_w, anchor_h);
|
| | | else sprintf(buff, "%2.4f,%2.4f", anchor_w, anchor_h);
|
| | | printf("%s", buff);
|
| | | fwrite(buff, sizeof(char), strlen(buff), fw);
|
| | | if (i + 1 < num_of_clusters) {
|
| | | fwrite(", ", sizeof(char), 2, fw);
|
| | | printf(", ");
|
| | | }
|
| | | }
|
| | | printf("\n");
|
| | | fclose(fw);
|
| | | }
|
| | | else {
|
| | | printf(" Error: file anchors.txt can't be open \n");
|
| | | }
|
| | |
|
| | | if (show) {
|
| | | #ifdef OPENCV
|
| | | show_acnhors(number_of_boxes, num_of_clusters, rel_width_height_array, anchors_data, width, height);
|
| | | #endif // OPENCV
|
| | | }
|
| | | free(rel_width_height_array);
|
| | | free(counter_per_class);
|
| | |
|
| | | getchar();
|
| | | }
|
| | |
|
| | |
|
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh,
|
| | | float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers)
|
| | | {
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *name_list = option_find_str(options, "names", "data/names.list");
|
| | | int names_size = 0;
|
| | | char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
|
| | |
|
| | | image **alphabet = load_alphabet();
|
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | net.benchmark_layers = benchmark_layers;
|
| | | fuse_conv_batchnorm(net);
|
| | | calculate_binary_weights(net);
|
| | | if (net.layers[net.n - 1].classes != names_size) {
|
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
|
| | | name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
|
| | | if (net.layers[net.n - 1].classes > names_size) getchar();
|
| | | }
|
| | | srand(2222222);
|
| | | char buff[256];
|
| | | char *input = buff;
|
| | | char *json_buf = NULL;
|
| | | int json_image_id = 0;
|
| | | FILE* json_file = NULL;
|
| | | if (outfile) {
|
| | | json_file = fopen(outfile, "wb");
|
| | | if(!json_file) {
|
| | | error("fopen failed");
|
| | | }
|
| | | char *tmp = "[\n";
|
| | | fwrite(tmp, sizeof(char), strlen(tmp), json_file);
|
| | | }
|
| | | int j;
|
| | | float nms = .45; // 0.4F
|
| | | while (1) {
|
| | | if (filename) {
|
| | | strncpy(input, filename, 256);
|
| | | if (strlen(input) > 0)
|
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
|
| | | }
|
| | | else {
|
| | | printf("Enter Image Path: ");
|
| | | fflush(stdout);
|
| | | input = fgets(input, 256, stdin);
|
| | | if (!input) break;
|
| | | strtok(input, "\n");
|
| | | }
|
| | | //image im;
|
| | | //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
|
| | | image im = load_image(input, 0, 0, net.c);
|
| | | image sized;
|
| | | if(letter_box) sized = letterbox_image(im, net.w, net.h);
|
| | | else sized = resize_image(im, net.w, net.h);
|
| | | layer l = net.layers[net.n - 1];
|
| | |
|
| | | //box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
| | | //float **probs = calloc(l.w*l.h*l.n, sizeof(float*));
|
| | | //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float));
|
| | |
|
| | | float *X = sized.data;
|
| | |
|
| | | //time= what_time_is_it_now();
|
| | | double time = get_time_point();
|
| | | network_predict(net, X);
|
| | | //network_predict_image(&net, im); letterbox = 1;
|
| | | printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000);
|
| | | //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time));
|
| | |
|
| | | int nboxes = 0;
|
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box);
|
| | | if (nms) {
|
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
|
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
|
| | | }
|
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output);
|
| | | save_image(im, "predictions");
|
| | | if (!dont_show) {
|
| | | show_image(im, "predictions");
|
| | | }
|
| | |
|
| | | if (json_file) {
|
| | | if (json_buf) {
|
| | | char *tmp = ", \n";
|
| | | fwrite(tmp, sizeof(char), strlen(tmp), json_file);
|
| | | }
|
| | | ++json_image_id;
|
| | | json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input);
|
| | |
|
| | | fwrite(json_buf, sizeof(char), strlen(json_buf), json_file);
|
| | | free(json_buf);
|
| | | }
|
| | |
|
| | | // pseudo labeling concept - fast.ai
|
| | | if (save_labels)
|
| | | {
|
| | | char labelpath[4096];
|
| | | replace_image_to_label(input, labelpath);
|
| | |
|
| | | FILE* fw = fopen(labelpath, "wb");
|
| | | int i;
|
| | | for (i = 0; i < nboxes; ++i) {
|
| | | char buff[1024];
|
| | | int class_id = -1;
|
| | | float prob = 0;
|
| | | for (j = 0; j < l.classes; ++j) {
|
| | | if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) {
|
| | | prob = dets[i].prob[j];
|
| | | class_id = j;
|
| | | }
|
| | | }
|
| | | if (class_id >= 0) {
|
| | | sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h);
|
| | | fwrite(buff, sizeof(char), strlen(buff), fw);
|
| | | }
|
| | | }
|
| | | fclose(fw);
|
| | | }
|
| | |
|
| | | free_detections(dets, nboxes);
|
| | | free_image(im);
|
| | | free_image(sized);
|
| | |
|
| | | if (!dont_show) {
|
| | | wait_until_press_key_cv();
|
| | | destroy_all_windows_cv();
|
| | | }
|
| | |
|
| | | if (filename) break;
|
| | | }
|
| | |
|
| | | if (json_file) {
|
| | | char *tmp = "\n]";
|
| | | fwrite(tmp, sizeof(char), strlen(tmp), json_file);
|
| | | fclose(json_file);
|
| | | }
|
| | |
|
| | | // free memory
|
| | | free_ptrs((void**)names, net.layers[net.n - 1].classes);
|
| | | free_list_contents_kvp(options);
|
| | | free_list(options);
|
| | |
|
| | | int i;
|
| | | const int nsize = 8;
|
| | | for (j = 0; j < nsize; ++j) {
|
| | | for (i = 32; i < 127; ++i) {
|
| | | free_image(alphabet[j][i]);
|
| | | }
|
| | | free(alphabet[j]);
|
| | | }
|
| | | free(alphabet);
|
| | |
|
| | | free_network(net);
|
| | | }
|
| | |
|
| | | #if defined(OPENCV) && defined(GPU)
|
| | |
|
| | | // adversarial attack dnn
|
| | | void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num,
|
| | | int letter_box, int benchmark_layers)
|
| | | {
|
| | | list *options = read_data_cfg(datacfg);
|
| | | char *name_list = option_find_str(options, "names", "data/names.list");
|
| | | int names_size = 0;
|
| | | char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list);
|
| | |
|
| | | image **alphabet = load_alphabet();
|
| | | network net = parse_network_cfg(cfgfile);// parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1
|
| | | net.adversarial = 1;
|
| | | set_batch_network(&net, 1);
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | net.benchmark_layers = benchmark_layers;
|
| | | //fuse_conv_batchnorm(net);
|
| | | //calculate_binary_weights(net);
|
| | | if (net.layers[net.n - 1].classes != names_size) {
|
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n",
|
| | | name_list, names_size, net.layers[net.n - 1].classes, cfgfile);
|
| | | if (net.layers[net.n - 1].classes > names_size) getchar();
|
| | | }
|
| | |
|
| | | srand(2222222);
|
| | | char buff[256];
|
| | | char *input = buff;
|
| | |
|
| | | int j;
|
| | | float nms = .45; // 0.4F
|
| | | while (1) {
|
| | | if (filename) {
|
| | | strncpy(input, filename, 256);
|
| | | if (strlen(input) > 0)
|
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0;
|
| | | }
|
| | | else {
|
| | | printf("Enter Image Path: ");
|
| | | fflush(stdout);
|
| | | input = fgets(input, 256, stdin);
|
| | | if (!input) break;
|
| | | strtok(input, "\n");
|
| | | }
|
| | | //image im;
|
| | | //image sized = load_image_resize(input, net.w, net.h, net.c, &im);
|
| | | image im = load_image(input, 0, 0, net.c);
|
| | | image sized;
|
| | | if (letter_box) sized = letterbox_image(im, net.w, net.h);
|
| | | else sized = resize_image(im, net.w, net.h);
|
| | |
|
| | | image src_sized = copy_image(sized);
|
| | |
|
| | | layer l = net.layers[net.n - 1];
|
| | | net.num_boxes = l.max_boxes;
|
| | | int num_truth = l.truths;
|
| | | float *truth_cpu = (float *)xcalloc(num_truth, sizeof(float));
|
| | |
|
| | | int *it_num_set = (int *)xcalloc(1, sizeof(int));
|
| | | float *lr_set = (float *)xcalloc(1, sizeof(float));
|
| | | int *boxonly = (int *)xcalloc(1, sizeof(int));
|
| | |
|
| | | cv_draw_object(sized, truth_cpu, net.num_boxes, num_truth, it_num_set, lr_set, boxonly, l.classes, names);
|
| | |
|
| | | net.learning_rate = *lr_set;
|
| | | it_num = *it_num_set;
|
| | |
|
| | | float *X = sized.data;
|
| | |
|
| | | mat_cv* img = NULL;
|
| | | float max_img_loss = 5;
|
| | | int number_of_lines = 100;
|
| | | int img_size = 1000;
|
| | | char windows_name[100];
|
| | | char *base = basecfg(cfgfile);
|
| | | sprintf(windows_name, "chart_%s.png", base);
|
| | | img = draw_train_chart(windows_name, max_img_loss, it_num, number_of_lines, img_size, dont_show, NULL);
|
| | |
|
| | | int iteration;
|
| | | for (iteration = 0; iteration < it_num; ++iteration)
|
| | | {
|
| | | forward_backward_network_gpu(net, X, truth_cpu);
|
| | |
|
| | | float avg_loss = get_network_cost(net);
|
| | | draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, it_num, 0, 0, "mAP%", dont_show, 0, 0);
|
| | |
|
| | | float inv_loss = 1.0 / max_val_cmp(0.01, avg_loss);
|
| | | //net.learning_rate = *lr_set * inv_loss;
|
| | |
|
| | | if (*boxonly) {
|
| | | int dw = truth_cpu[2] * sized.w, dh = truth_cpu[3] * sized.h;
|
| | | int dx = truth_cpu[0] * sized.w - dw / 2, dy = truth_cpu[1] * sized.h - dh / 2;
|
| | | image crop = crop_image(sized, dx, dy, dw, dh);
|
| | | copy_image_inplace(src_sized, sized);
|
| | | embed_image(crop, sized, dx, dy);
|
| | | }
|
| | |
|
| | | show_image_cv(sized, "image_optimization");
|
| | | wait_key_cv(20);
|
| | | }
|
| | |
|
| | | net.train = 0;
|
| | | quantize_image(sized);
|
| | | network_predict(net, X);
|
| | |
|
| | | save_image_png(sized, "drawn");
|
| | | //sized = load_image("drawn.png", 0, 0, net.c);
|
| | |
|
| | | int nboxes = 0;
|
| | | detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, 0, 0, 1, &nboxes, letter_box);
|
| | | if (nms) {
|
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms);
|
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms);
|
| | | }
|
| | | draw_detections_v3(sized, dets, nboxes, thresh, names, alphabet, l.classes, 1);
|
| | | save_image(sized, "pre_predictions");
|
| | | if (!dont_show) {
|
| | | show_image(sized, "pre_predictions");
|
| | | }
|
| | |
|
| | | free_detections(dets, nboxes);
|
| | | free_image(im);
|
| | | free_image(sized);
|
| | | free_image(src_sized);
|
| | |
|
| | | if (!dont_show) {
|
| | | wait_until_press_key_cv();
|
| | | destroy_all_windows_cv();
|
| | | }
|
| | |
|
| | | free(lr_set);
|
| | | free(it_num_set);
|
| | |
|
| | | if (filename) break;
|
| | | }
|
| | |
|
| | | // free memory
|
| | | free_ptrs((void**)names, net.layers[net.n - 1].classes);
|
| | | free_list_contents_kvp(options);
|
| | | free_list(options);
|
| | |
|
| | | int i;
|
| | | const int nsize = 8;
|
| | | for (j = 0; j < nsize; ++j) {
|
| | | for (i = 32; i < 127; ++i) {
|
| | | free_image(alphabet[j][i]);
|
| | | }
|
| | | free(alphabet[j]);
|
| | | }
|
| | | free(alphabet);
|
| | |
|
| | | free_network(net);
|
| | | }
|
| | | #else // defined(OPENCV) && defined(GPU)
|
| | | void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num,
|
| | | int letter_box, int benchmark_layers)
|
| | | {
|
| | | printf(" ./darknet detector draw ... can't be used without OpenCV and CUDA! \n");
|
| | | getchar();
|
| | | }
|
| | | #endif // defined(OPENCV) && defined(GPU)
|
| | |
|
| | | void run_detector(int argc, char **argv)
|
| | | {
|
| | | int dont_show = find_arg(argc, argv, "-dont_show");
|
| | | int benchmark = find_arg(argc, argv, "-benchmark");
|
| | | int benchmark_layers = find_arg(argc, argv, "-benchmark_layers");
|
| | | //if (benchmark_layers) benchmark = 1;
|
| | | if (benchmark) dont_show = 1;
|
| | | int show = find_arg(argc, argv, "-show");
|
| | | int letter_box = find_arg(argc, argv, "-letter_box");
|
| | | int calc_map = find_arg(argc, argv, "-map");
|
| | | int map_points = find_int_arg(argc, argv, "-points", 0);
|
| | | check_mistakes = find_arg(argc, argv, "-check_mistakes");
|
| | | int show_imgs = find_arg(argc, argv, "-show_imgs");
|
| | | int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
|
| | | int dontdraw_bbox = find_arg(argc, argv, "-dontdraw_bbox");
|
| | | int json_port = find_int_arg(argc, argv, "-json_port", -1);
|
| | | char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0);
|
| | | int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0);
|
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
|
| | | char *outfile = find_char_arg(argc, argv, "-out", 0);
|
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0);
|
| | | float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24
|
| | | float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5); // 0.5 for mAP
|
| | | float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
|
| | | int cam_index = find_int_arg(argc, argv, "-c", 0);
|
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0);
|
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
|
| | | int width = find_int_arg(argc, argv, "-width", -1);
|
| | | int height = find_int_arg(argc, argv, "-height", -1);
|
| | | // extended output in test mode (output of rect bound coords)
|
| | | // and for recall mode (extended output table-like format with results for best_class fit)
|
| | | int ext_output = find_arg(argc, argv, "-ext_output");
|
| | | int save_labels = find_arg(argc, argv, "-save_labels");
|
| | | char* chart_path = find_char_arg(argc, argv, "-chart", 0);
|
| | | if (argc < 4) {
|
| | | fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
| | | return;
|
| | | }
|
| | | char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
|
| | | int *gpus = 0;
|
| | | int gpu = 0;
|
| | | int ngpus = 0;
|
| | | if (gpu_list) {
|
| | | printf("%s\n", gpu_list);
|
| | | int len = (int)strlen(gpu_list);
|
| | | ngpus = 1;
|
| | | int i;
|
| | | for (i = 0; i < len; ++i) {
|
| | | if (gpu_list[i] == ',') ++ngpus;
|
| | | }
|
| | | gpus = (int*)xcalloc(ngpus, sizeof(int));
|
| | | for (i = 0; i < ngpus; ++i) {
|
| | | gpus[i] = atoi(gpu_list);
|
| | | gpu_list = strchr(gpu_list, ',') + 1;
|
| | | }
|
| | | }
|
| | | else {
|
| | | gpu = gpu_index;
|
| | | gpus = &gpu;
|
| | | ngpus = 1;
|
| | | }
|
| | |
|
| | | int clear = find_arg(argc, argv, "-clear");
|
| | |
|
| | | char *datacfg = argv[3];
|
| | | char *cfg = argv[4];
|
| | | char *weights = (argc > 5) ? argv[5] : 0;
|
| | | if (weights)
|
| | | if (strlen(weights) > 0)
|
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0;
|
| | | char *filename = (argc > 6) ? argv[6] : 0;
|
| | | if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers);
|
| | | else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers, chart_path);
|
| | | else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
|
| | | else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
|
| | | else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL);
|
| | | else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show);
|
| | | else if (0 == strcmp(argv[2], "draw")) {
|
| | | int it_num = 100;
|
| | | draw_object(datacfg, cfg, weights, filename, thresh, dont_show, it_num, letter_box, benchmark_layers);
|
| | | }
|
| | | else if (0 == strcmp(argv[2], "demo")) {
|
| | | list *options = read_data_cfg(datacfg);
|
| | | int classes = option_find_int(options, "classes", 20);
|
| | | char *name_list = option_find_str(options, "names", "data/names.list");
|
| | | char **names = get_labels(name_list);
|
| | | if (filename)
|
| | | if (strlen(filename) > 0)
|
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0;
|
| | | demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename,
|
| | | mjpeg_port, dontdraw_bbox, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers);
|
| | |
|
| | | free_list_contents_kvp(options);
|
| | | free_list(options);
|
| | | }
|
| | | else printf(" There isn't such command: %s", argv[2]);
|
| | |
|
| | | if (gpus && gpu_list && ngpus > 1) free(gpus);
|
| | | }
|
| | | #include <stdlib.h> |
| | | #include "darknet.h" |
| | | #include "network.h" |
| | | #include "region_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "demo.h" |
| | | #include "option_list.h" |
| | | |
| | | #ifndef __COMPAR_FN_T |
| | | #define __COMPAR_FN_T |
| | | typedef int (*__compar_fn_t)(const void*, const void*); |
| | | #ifdef __USE_GNU |
| | | typedef __compar_fn_t comparison_fn_t; |
| | | #endif |
| | | #endif |
| | | |
| | | #include "http_stream.h" |
| | | |
| | | int check_mistakes = 0; |
| | | |
| | | static int coco_ids[] = { 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90 }; |
| | | |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port, int show_imgs, int benchmark_layers, char* chart_path) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.txt"); |
| | | char *valid_images = option_find_str(options, "valid", train_images); |
| | | char *backup_directory = option_find_str(options, "backup", "/backup/"); |
| | | |
| | | network net_map; |
| | | if (calc_map) { |
| | | FILE* valid_file = fopen(valid_images, "r"); |
| | | if (!valid_file) { |
| | | printf("\n Error: There is no %s file for mAP calculation!\n Don't use -map flag.\n Or set valid=%s in your %s file. \n", valid_images, train_images, datacfg); |
| | | getchar(); |
| | | exit(-1); |
| | | } |
| | | else fclose(valid_file); |
| | | |
| | | cuda_set_device(gpus[0]); |
| | | printf(" Prepare additional network for mAP calculation...\n"); |
| | | net_map = parse_network_cfg_custom(cfgfile, 1, 1); |
| | | net_map.benchmark_layers = benchmark_layers; |
| | | const int net_classes = net_map.layers[net_map.n - 1].classes; |
| | | |
| | | int k; // free memory unnecessary arrays |
| | | for (k = 0; k < net_map.n - 1; ++k) free_layer_custom(net_map.layers[k], 1); |
| | | |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | int names_size = 0; |
| | | char **names = get_labels_custom(name_list, &names_size); |
| | | if (net_classes != names_size) { |
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", |
| | | name_list, names_size, net_classes, cfgfile); |
| | | if (net_classes > names_size) getchar(); |
| | | } |
| | | free_ptrs((void**)names, net_map.layers[net_map.n - 1].classes); |
| | | } |
| | | |
| | | srand(time(0)); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | | float avg_contrastive_acc = 0; |
| | | network* nets = (network*)xcalloc(ngpus, sizeof(network)); |
| | | |
| | | srand(time(0)); |
| | | int seed = rand(); |
| | | int k; |
| | | for (k = 0; k < ngpus; ++k) { |
| | | srand(seed); |
| | | #ifdef GPU |
| | | cuda_set_device(gpus[k]); |
| | | #endif |
| | | nets[k] = parse_network_cfg(cfgfile); |
| | | nets[k].benchmark_layers = benchmark_layers; |
| | | if (weightfile) { |
| | | load_weights(&nets[k], weightfile); |
| | | } |
| | | if (clear) { |
| | | *nets[k].seen = 0; |
| | | *nets[k].cur_iteration = 0; |
| | | } |
| | | nets[k].learning_rate *= ngpus; |
| | | } |
| | | srand(time(0)); |
| | | network net = nets[0]; |
| | | |
| | | const int actual_batch_size = net.batch * net.subdivisions; |
| | | if (actual_batch_size == 1) { |
| | | printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n"); |
| | | getchar(); |
| | | } |
| | | else if (actual_batch_size < 8) { |
| | | printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size); |
| | | } |
| | | |
| | | int imgs = net.batch * net.subdivisions * ngpus; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | data train, buffer; |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | for (k = 0; k < net.n; ++k) { |
| | | layer lk = net.layers[k]; |
| | | if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { |
| | | l = lk; |
| | | printf(" Detection layer: %d - type = %d \n", k, l.type); |
| | | } |
| | | } |
| | | |
| | | int classes = l.classes; |
| | | |
| | | list *plist = get_paths(train_images); |
| | | int train_images_num = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | const int init_w = net.w; |
| | | const int init_h = net.h; |
| | | const int init_b = net.batch; |
| | | int iter_save, iter_save_last, iter_map; |
| | | iter_save = get_current_iteration(net); |
| | | iter_save_last = get_current_iteration(net); |
| | | iter_map = get_current_iteration(net); |
| | | float mean_average_precision = -1; |
| | | float best_map = mean_average_precision; |
| | | |
| | | load_args args = { 0 }; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.c = net.c; |
| | | args.paths = paths; |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.flip = net.flip; |
| | | args.jitter = l.jitter; |
| | | args.resize = l.resize; |
| | | args.num_boxes = l.max_boxes; |
| | | args.truth_size = l.truth_size; |
| | | net.num_boxes = args.num_boxes; |
| | | net.train_images_num = train_images_num; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 64; // 16 or 64 |
| | | |
| | | args.angle = net.angle; |
| | | args.gaussian_noise = net.gaussian_noise; |
| | | args.blur = net.blur; |
| | | args.mixup = net.mixup; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | args.letter_box = net.letter_box; |
| | | args.mosaic_bound = net.mosaic_bound; |
| | | args.contrastive = net.contrastive; |
| | | args.contrastive_jit_flip = net.contrastive_jit_flip; |
| | | args.contrastive_color = net.contrastive_color; |
| | | if (dont_show && show_imgs) show_imgs = 2; |
| | | args.show_imgs = show_imgs; |
| | | |
| | | #ifdef OPENCV |
| | | //int num_threads = get_num_threads(); |
| | | //if(num_threads > 2) args.threads = get_num_threads() - 2; |
| | | args.threads = 6 * ngpus; // 3 for - Amazon EC2 Tesla V100: p3.2xlarge (8 logical cores) - p3.16xlarge |
| | | //args.threads = 12 * ngpus; // Ryzen 7 2700X (16 logical cores) |
| | | mat_cv* img = NULL; |
| | | float max_img_loss = net.max_chart_loss; |
| | | int number_of_lines = 100; |
| | | int img_size = 1000; |
| | | char windows_name[100]; |
| | | sprintf(windows_name, "chart_%s.png", base); |
| | | img = draw_train_chart(windows_name, max_img_loss, net.max_batches, number_of_lines, img_size, dont_show, chart_path); |
| | | #endif //OPENCV |
| | | if (net.contrastive && args.threads > net.batch/2) args.threads = net.batch / 2; |
| | | if (net.track) { |
| | | args.track = net.track; |
| | | args.augment_speed = net.augment_speed; |
| | | if (net.sequential_subdivisions) args.threads = net.sequential_subdivisions * ngpus; |
| | | else args.threads = net.subdivisions * ngpus; |
| | | args.mini_batch = net.batch / net.time_steps; |
| | | printf("\n Tracking! batch = %d, subdiv = %d, time_steps = %d, mini_batch = %d \n", net.batch, net.subdivisions, net.time_steps, args.mini_batch); |
| | | } |
| | | //printf(" imgs = %d \n", imgs); |
| | | |
| | | pthread_t load_thread = load_data(args); |
| | | |
| | | int count = 0; |
| | | double time_remaining, avg_time = -1, alpha_time = 0.01; |
| | | |
| | | //while(i*imgs < N*120){ |
| | | while (get_current_iteration(net) < net.max_batches) { |
| | | if (l.random && count++ % 10 == 0) { |
| | | float rand_coef = 1.4; |
| | | if (l.random != 1.0) rand_coef = l.random; |
| | | printf("Resizing, random_coef = %.2f \n", rand_coef); |
| | | float random_val = rand_scale(rand_coef); // *x or /x |
| | | int dim_w = roundl(random_val*init_w / net.resize_step + 1) * net.resize_step; |
| | | int dim_h = roundl(random_val*init_h / net.resize_step + 1) * net.resize_step; |
| | | if (random_val < 1 && (dim_w > init_w || dim_h > init_h)) dim_w = init_w, dim_h = init_h; |
| | | |
| | | int max_dim_w = roundl(rand_coef*init_w / net.resize_step + 1) * net.resize_step; |
| | | int max_dim_h = roundl(rand_coef*init_h / net.resize_step + 1) * net.resize_step; |
| | | |
| | | // at the beginning (check if enough memory) and at the end (calc rolling mean/variance) |
| | | if (avg_loss < 0 || get_current_iteration(net) > net.max_batches - 100) { |
| | | dim_w = max_dim_w; |
| | | dim_h = max_dim_h; |
| | | } |
| | | |
| | | if (dim_w < net.resize_step) dim_w = net.resize_step; |
| | | if (dim_h < net.resize_step) dim_h = net.resize_step; |
| | | int dim_b = (init_b * max_dim_w * max_dim_h) / (dim_w * dim_h); |
| | | int new_dim_b = (int)(dim_b * 0.8); |
| | | if (new_dim_b > init_b) dim_b = new_dim_b; |
| | | |
| | | args.w = dim_w; |
| | | args.h = dim_h; |
| | | |
| | | int k; |
| | | if (net.dynamic_minibatch) { |
| | | for (k = 0; k < ngpus; ++k) { |
| | | (*nets[k].seen) = init_b * net.subdivisions * get_current_iteration(net); // remove this line, when you will save to weights-file both: seen & cur_iteration |
| | | nets[k].batch = dim_b; |
| | | int j; |
| | | for (j = 0; j < nets[k].n; ++j) |
| | | nets[k].layers[j].batch = dim_b; |
| | | } |
| | | net.batch = dim_b; |
| | | imgs = net.batch * net.subdivisions * ngpus; |
| | | args.n = imgs; |
| | | printf("\n %d x %d (batch = %d) \n", dim_w, dim_h, net.batch); |
| | | } |
| | | else |
| | | printf("\n %d x %d \n", dim_w, dim_h); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | free_data(train); |
| | | load_thread = load_data(args); |
| | | |
| | | for (k = 0; k < ngpus; ++k) { |
| | | resize_network(nets + k, dim_w, dim_h); |
| | | } |
| | | net = nets[0]; |
| | | } |
| | | double time = what_time_is_it_now(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | if (net.track) { |
| | | net.sequential_subdivisions = get_current_seq_subdivisions(net); |
| | | args.threads = net.sequential_subdivisions * ngpus; |
| | | printf(" sequential_subdivisions = %d, sequence = %d \n", net.sequential_subdivisions, get_sequence_value(net)); |
| | | } |
| | | load_thread = load_data(args); |
| | | //wait_key_cv(500); |
| | | |
| | | /* |
| | | int k; |
| | | for(k = 0; k < l.max_boxes; ++k){ |
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5); |
| | | if(!b.x) break; |
| | | printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); |
| | | } |
| | | image im = float_to_image(448, 448, 3, train.X.vals[10]); |
| | | int k; |
| | | for(k = 0; k < l.max_boxes; ++k){ |
| | | box b = float_to_box(train.y.vals[10] + 1 + k*5); |
| | | printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); |
| | | draw_bbox(im, b, 8, 1,0,0); |
| | | } |
| | | save_image(im, "truth11"); |
| | | */ |
| | | |
| | | const double load_time = (what_time_is_it_now() - time); |
| | | printf("Loaded: %lf seconds", load_time); |
| | | if (load_time > 0.1 && avg_loss > 0) printf(" - performance bottleneck on CPU or Disk HDD/SSD"); |
| | | printf("\n"); |
| | | |
| | | time = what_time_is_it_now(); |
| | | float loss = 0; |
| | | #ifdef GPU |
| | | if (ngpus == 1) { |
| | | int wait_key = (dont_show) ? 0 : 1; |
| | | loss = train_network_waitkey(net, train, wait_key); |
| | | } |
| | | else { |
| | | loss = train_networks(nets, ngpus, train, 4); |
| | | } |
| | | #else |
| | | loss = train_network(net, train); |
| | | #endif |
| | | if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan) |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | const int iteration = get_current_iteration(net); |
| | | //i = get_current_batch(net); |
| | | |
| | | int calc_map_for_each = 4 * train_images_num / (net.batch * net.subdivisions); // calculate mAP for each 4 Epochs |
| | | calc_map_for_each = fmax(calc_map_for_each, 100); |
| | | int next_map_calc = iter_map + calc_map_for_each; |
| | | next_map_calc = fmax(next_map_calc, net.burn_in); |
| | | //next_map_calc = fmax(next_map_calc, 400); |
| | | if (calc_map) { |
| | | printf("\n (next mAP calculation at %d iterations) ", next_map_calc); |
| | | if (mean_average_precision > 0) printf("\n Last accuracy mAP@0.5 = %2.2f %%, best = %2.2f %% ", mean_average_precision * 100, best_map * 100); |
| | | } |
| | | |
| | | if (net.cudnn_half) { |
| | | if (iteration < net.burn_in * 3) fprintf(stderr, "\n Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in); |
| | | else fprintf(stderr, "\n Tensor Cores are used.\n"); |
| | | fflush(stderr); |
| | | } |
| | | printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images, %f hours left\n", iteration, loss, avg_loss, get_current_rate(net), (what_time_is_it_now() - time), iteration*imgs, avg_time); |
| | | fflush(stdout); |
| | | |
| | | int draw_precision = 0; |
| | | if (calc_map && (iteration >= next_map_calc || iteration == net.max_batches)) { |
| | | if (l.random) { |
| | | printf("Resizing to initial size: %d x %d ", init_w, init_h); |
| | | args.w = init_w; |
| | | args.h = init_h; |
| | | int k; |
| | | if (net.dynamic_minibatch) { |
| | | for (k = 0; k < ngpus; ++k) { |
| | | for (k = 0; k < ngpus; ++k) { |
| | | nets[k].batch = init_b; |
| | | int j; |
| | | for (j = 0; j < nets[k].n; ++j) |
| | | nets[k].layers[j].batch = init_b; |
| | | } |
| | | } |
| | | net.batch = init_b; |
| | | imgs = init_b * net.subdivisions * ngpus; |
| | | args.n = imgs; |
| | | printf("\n %d x %d (batch = %d) \n", init_w, init_h, init_b); |
| | | } |
| | | pthread_join(load_thread, 0); |
| | | free_data(train); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | | for (k = 0; k < ngpus; ++k) { |
| | | resize_network(nets + k, init_w, init_h); |
| | | } |
| | | net = nets[0]; |
| | | } |
| | | |
| | | copy_weights_net(net, &net_map); |
| | | |
| | | // combine Training and Validation networks |
| | | //network net_combined = combine_train_valid_networks(net, net_map); |
| | | |
| | | iter_map = iteration; |
| | | mean_average_precision = validate_detector_map(datacfg, cfgfile, weightfile, 0.25, 0.5, 0, net.letter_box, &net_map);// &net_combined); |
| | | printf("\n mean_average_precision (mAP@0.5) = %f \n", mean_average_precision); |
| | | if (mean_average_precision > best_map) { |
| | | best_map = mean_average_precision; |
| | | printf("New best mAP!\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_best.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | draw_precision = 1; |
| | | } |
| | | time_remaining = ((net.max_batches - iteration) / ngpus)*(what_time_is_it_now() - time + load_time) / 60 / 60; |
| | | // set initial value, even if resume training from 10000 iteration |
| | | if (avg_time < 0) avg_time = time_remaining; |
| | | else avg_time = alpha_time * time_remaining + (1 - alpha_time) * avg_time; |
| | | #ifdef OPENCV |
| | | if (net.contrastive) { |
| | | float cur_con_acc = -1; |
| | | for (k = 0; k < net.n; ++k) |
| | | if (net.layers[k].type == CONTRASTIVE) cur_con_acc = *net.layers[k].loss; |
| | | if (cur_con_acc >= 0) avg_contrastive_acc = avg_contrastive_acc*0.99 + cur_con_acc * 0.01; |
| | | printf(" avg_contrastive_acc = %f \n", avg_contrastive_acc); |
| | | } |
| | | draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, net.max_batches, mean_average_precision, draw_precision, "mAP%", avg_contrastive_acc / 100, dont_show, mjpeg_port, avg_time); |
| | | #endif // OPENCV |
| | | |
| | | //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { |
| | | //if (i % 100 == 0) { |
| | | if ((iteration >= (iter_save + 10000) || iteration % 10000 == 0) || |
| | | (iteration >= (iter_save + 1000) || iteration % 1000 == 0) && net.max_batches < 10000) |
| | | { |
| | | iter_save = iteration; |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, iteration); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | if (iteration >= (iter_save_last + 100) || (iteration % 100 == 0 && iteration > 1)) { |
| | | iter_save_last = iteration; |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_last.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | if (net.ema_alpha && is_ema_initialized(net)) { |
| | | sprintf(buff, "%s/%s_ema.weights", backup_directory, base); |
| | | save_weights_upto(net, buff, net.n, 1); |
| | | printf(" EMA weights are saved to the file: %s \n", buff); |
| | | } |
| | | } |
| | | free_data(train); |
| | | } |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | printf("If you want to train from the beginning, then use flag in the end of training command: -clear \n"); |
| | | |
| | | #ifdef OPENCV |
| | | release_mat(&img); |
| | | destroy_all_windows_cv(); |
| | | #endif |
| | | |
| | | // free memory |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | |
| | | free_load_threads(&args); |
| | | |
| | | free(base); |
| | | free(paths); |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | |
| | | for (k = 0; k < ngpus; ++k) free_network(nets[k]); |
| | | free(nets); |
| | | //free_network(net); |
| | | |
| | | if (calc_map) { |
| | | net_map.n = 0; |
| | | free_network(net_map); |
| | | } |
| | | } |
| | | |
| | | |
| | | static int get_coco_image_id(char *filename) |
| | | { |
| | | char *p = strrchr(filename, '/'); |
| | | char *c = strrchr(filename, '_'); |
| | | if (c) p = c; |
| | | return atoi(p + 1); |
| | | } |
| | | |
| | | static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | //int image_id = get_coco_image_id(image_path); |
| | | char *p = basecfg(image_path); |
| | | int image_id = atoi(p); |
| | | for (i = 0; i < num_boxes; ++i) { |
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; |
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; |
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; |
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | float bx = xmin; |
| | | float by = ymin; |
| | | float bw = xmax - xmin; |
| | | float bh = ymax - ymin; |
| | | |
| | | for (j = 0; j < classes; ++j) { |
| | | if (dets[i].prob[j] > 0) { |
| | | char buff[1024]; |
| | | sprintf(buff, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); |
| | | fprintf(fp, buff); |
| | | //printf("%s", buff); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for (i = 0; i < total; ++i) { |
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1; |
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1; |
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1; |
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1; |
| | | |
| | | if (xmin < 1) xmin = 1; |
| | | if (ymin < 1) ymin = 1; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for (j = 0; j < classes; ++j) { |
| | | if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for (i = 0; i < total; ++i) { |
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; |
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; |
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; |
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for (j = 0; j < classes; ++j) { |
| | | int myclass = j; |
| | | if (dets[i].prob[myclass] > 0) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[myclass], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | | } |
| | | } |
| | | |
| | | static void print_kitti_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h, char *outfile, char *prefix) |
| | | { |
| | | char *kitti_ids[] = { "car", "pedestrian", "cyclist" }; |
| | | FILE *fpd = 0; |
| | | char buffd[1024]; |
| | | snprintf(buffd, 1024, "%s/%s/data/%s.txt", prefix, outfile, id); |
| | | |
| | | fpd = fopen(buffd, "w"); |
| | | int i, j; |
| | | for (i = 0; i < total; ++i) |
| | | { |
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; |
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; |
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; |
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for (j = 0; j < classes; ++j) |
| | | { |
| | | //if (dets[i].prob[j]) fprintf(fpd, "%s 0 0 0 %f %f %f %f -1 -1 -1 -1 0 0 0 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]); |
| | | if (dets[i].prob[j]) fprintf(fpd, "%s -1 -1 -10 %f %f %f %f -1 -1 -1 -1000 -1000 -1000 -10 %f\n", kitti_ids[j], xmin, ymin, xmax, ymax, dets[i].prob[j]); |
| | | } |
| | | } |
| | | fclose(fpd); |
| | | } |
| | | |
| | | static void eliminate_bdd(char *buf, char *a) |
| | | { |
| | | int n = 0; |
| | | int i, k; |
| | | for (i = 0; buf[i] != '\0'; i++) |
| | | { |
| | | if (buf[i] == a[n]) |
| | | { |
| | | k = i; |
| | | while (buf[i] == a[n]) |
| | | { |
| | | if (a[++n] == '\0') |
| | | { |
| | | for (k; buf[k + n] != '\0'; k++) |
| | | { |
| | | buf[k] = buf[k + n]; |
| | | } |
| | | buf[k] = '\0'; |
| | | break; |
| | | } |
| | | i++; |
| | | } |
| | | n = 0; i--; |
| | | } |
| | | } |
| | | } |
| | | |
| | | static void get_bdd_image_id(char *filename) |
| | | { |
| | | char *p = strrchr(filename, '/'); |
| | | eliminate_bdd(p, ".jpg"); |
| | | eliminate_bdd(p, "/"); |
| | | strcpy(filename, p); |
| | | } |
| | | |
| | | static void print_bdd_detections(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) |
| | | { |
| | | char *bdd_ids[] = { "bike" , "bus" , "car" , "motor" ,"person", "rider", "traffic light", "traffic sign", "train", "truck" }; |
| | | get_bdd_image_id(image_path); |
| | | int i, j; |
| | | |
| | | for (i = 0; i < num_boxes; ++i) |
| | | { |
| | | float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; |
| | | float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; |
| | | float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; |
| | | float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | float bx1 = xmin; |
| | | float by1 = ymin; |
| | | float bx2 = xmax; |
| | | float by2 = ymax; |
| | | |
| | | for (j = 0; j < classes; ++j) |
| | | { |
| | | if (dets[i].prob[j]) |
| | | { |
| | | fprintf(fp, "\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f, %f, %f, %f],\n\t\t\"score\":%f\n\t},\n", image_path, bdd_ids[j], bx1, by1, bx2, by2, dets[i].prob[j]); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | int j; |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.list"); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char *prefix = option_find_str(options, "results", "results"); |
| | | char **names = get_labels(name_list); |
| | | char *mapf = option_find_str(options, "map", 0); |
| | | int *map = 0; |
| | | if (mapf) map = read_map(mapf); |
| | | |
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | //set_batch_network(&net, 1); |
| | | fuse_conv_batchnorm(net); |
| | | calculate_binary_weights(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | layer lk = net.layers[k]; |
| | | if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { |
| | | l = lk; |
| | | printf(" Detection layer: %d - type = %d \n", k, l.type); |
| | | } |
| | | } |
| | | int classes = l.classes; |
| | | |
| | | char buff[1024]; |
| | | char *type = option_find_str(options, "eval", "voc"); |
| | | FILE *fp = 0; |
| | | FILE **fps = 0; |
| | | int coco = 0; |
| | | int imagenet = 0; |
| | | int bdd = 0; |
| | | int kitti = 0; |
| | | |
| | | if (0 == strcmp(type, "coco")) { |
| | | if (!outfile) outfile = "coco_results"; |
| | | snprintf(buff, 1024, "%s/%s.json", prefix, outfile); |
| | | fp = fopen(buff, "w"); |
| | | fprintf(fp, "[\n"); |
| | | coco = 1; |
| | | } |
| | | else if (0 == strcmp(type, "bdd")) { |
| | | if (!outfile) outfile = "bdd_results"; |
| | | snprintf(buff, 1024, "%s/%s.json", prefix, outfile); |
| | | fp = fopen(buff, "w"); |
| | | fprintf(fp, "[\n"); |
| | | bdd = 1; |
| | | } |
| | | else if (0 == strcmp(type, "kitti")) { |
| | | char buff2[1024]; |
| | | if (!outfile) outfile = "kitti_results"; |
| | | printf("%s\n", outfile); |
| | | snprintf(buff, 1024, "%s/%s", prefix, outfile); |
| | | int mkd = make_directory(buff, 0777); |
| | | snprintf(buff2, 1024, "%s/%s/data", prefix, outfile); |
| | | int mkd2 = make_directory(buff2, 0777); |
| | | kitti = 1; |
| | | } |
| | | else if (0 == strcmp(type, "imagenet")) { |
| | | if (!outfile) outfile = "imagenet-detection"; |
| | | snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); |
| | | fp = fopen(buff, "w"); |
| | | imagenet = 1; |
| | | classes = 200; |
| | | } |
| | | else { |
| | | if (!outfile) outfile = "comp4_det_test_"; |
| | | fps = (FILE**) xcalloc(classes, sizeof(FILE *)); |
| | | for (j = 0; j < classes; ++j) { |
| | | snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | } |
| | | |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int t; |
| | | |
| | | float thresh = .001; |
| | | float nms = .6; |
| | | |
| | | int nthreads = 4; |
| | | if (m < 4) nthreads = m; |
| | | image* val = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* buf = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); |
| | | pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); |
| | | |
| | | load_args args = { 0 }; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.c = net.c; |
| | | args.type = IMAGE_DATA; |
| | | const int letter_box = net.letter_box; |
| | | if (letter_box) args.type = LETTERBOX_DATA; |
| | | |
| | | for (t = 0; t < nthreads; ++t) { |
| | | args.path = paths[i + t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | time_t start = time(0); |
| | | for (i = nthreads; i < m + nthreads; i += nthreads) { |
| | | fprintf(stderr, "%d\n", i); |
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | val_resized[t] = buf_resized[t]; |
| | | } |
| | | for (t = 0; t < nthreads && i + t < m; ++t) { |
| | | args.path = paths[i + t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
| | | char *path = paths[i + t - nthreads]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letter_box); |
| | | if (nms) { |
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); |
| | | } |
| | | |
| | | if (coco) { |
| | | print_cocos(fp, path, dets, nboxes, classes, w, h); |
| | | } |
| | | else if (imagenet) { |
| | | print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h); |
| | | } |
| | | else if (bdd) { |
| | | print_bdd_detections(fp, path, dets, nboxes, classes, w, h); |
| | | } |
| | | else if (kitti) { |
| | | print_kitti_detections(fps, id, dets, nboxes, classes, w, h, outfile, prefix); |
| | | } |
| | | else { |
| | | print_detector_detections(fps, id, dets, nboxes, classes, w, h); |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | | } |
| | | if (fps) { |
| | | for (j = 0; j < classes; ++j) { |
| | | fclose(fps[j]); |
| | | } |
| | | free(fps); |
| | | } |
| | | if (coco) { |
| | | #ifdef WIN32 |
| | | fseek(fp, -3, SEEK_CUR); |
| | | #else |
| | | fseek(fp, -2, SEEK_CUR); |
| | | #endif |
| | | fprintf(fp, "\n]\n"); |
| | | } |
| | | |
| | | if (bdd) { |
| | | #ifdef WIN32 |
| | | fseek(fp, -3, SEEK_CUR); |
| | | #else |
| | | fseek(fp, -2, SEEK_CUR); |
| | | #endif |
| | | fprintf(fp, "\n]\n"); |
| | | fclose(fp); |
| | | } |
| | | |
| | | if (fp) fclose(fp); |
| | | |
| | | if (val) free(val); |
| | | if (val_resized) free(val_resized); |
| | | if (thr) free(thr); |
| | | if (buf) free(buf); |
| | | if (buf_resized) free(buf_resized); |
| | | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start); |
| | | } |
| | | |
| | | void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | //set_batch_network(&net, 1); |
| | | fuse_conv_batchnorm(net); |
| | | srand(time(0)); |
| | | |
| | | //list *plist = get_paths("data/coco_val_5k.list"); |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | //layer l = net.layers[net.n - 1]; |
| | | |
| | | int j, k; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | |
| | | float thresh = .001; |
| | | float iou_thresh = .5; |
| | | float nms = .4; |
| | | |
| | | int total = 0; |
| | | int correct = 0; |
| | | int proposals = 0; |
| | | float avg_iou = 0; |
| | | |
| | | for (i = 0; i < m; ++i) { |
| | | char *path = paths[i]; |
| | | image orig = load_image(path, 0, 0, net.c); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | network_predict(net, sized.data); |
| | | int nboxes = 0; |
| | | int letterbox = 0; |
| | | detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_obj(dets, nboxes, 1, nms); |
| | | |
| | | char labelpath[4096]; |
| | | replace_image_to_label(path, labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for (k = 0; k < nboxes; ++k) { |
| | | if (dets[k].objectness > thresh) { |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
| | | float best_iou = 0; |
| | | for (k = 0; k < nboxes; ++k) { |
| | | float iou = box_iou(dets[k].bbox, t); |
| | | if (dets[k].objectness > thresh && iou > best_iou) { |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if (best_iou > iou_thresh) { |
| | | ++correct; |
| | | } |
| | | } |
| | | //fprintf(stderr, " %s - %s - ", paths[i], labelpath); |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total); |
| | | free(id); |
| | | free_image(orig); |
| | | free_image(sized); |
| | | } |
| | | } |
| | | |
| | | typedef struct { |
| | | box b; |
| | | float p; |
| | | int class_id; |
| | | int image_index; |
| | | int truth_flag; |
| | | int unique_truth_index; |
| | | } box_prob; |
| | | |
| | | int detections_comparator(const void *pa, const void *pb) |
| | | { |
| | | box_prob a = *(const box_prob *)pa; |
| | | box_prob b = *(const box_prob *)pb; |
| | | float diff = a.p - b.p; |
| | | if (diff < 0) return 1; |
| | | else if (diff > 0) return -1; |
| | | return 0; |
| | | } |
| | | |
| | | float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, const int map_points, int letter_box, network *existing_net) |
| | | { |
| | | int j; |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
| | | char *difficult_valid_images = option_find_str(options, "difficult", NULL); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | int names_size = 0; |
| | | char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); |
| | | //char *mapf = option_find_str(options, "map", 0); |
| | | //int *map = 0; |
| | | //if (mapf) map = read_map(mapf); |
| | | FILE* reinforcement_fd = NULL; |
| | | |
| | | network net; |
| | | //int initial_batch; |
| | | if (existing_net) { |
| | | char *train_images = option_find_str(options, "train", "data/train.txt"); |
| | | valid_images = option_find_str(options, "valid", train_images); |
| | | net = *existing_net; |
| | | remember_network_recurrent_state(*existing_net); |
| | | free_network_recurrent_state(*existing_net); |
| | | } |
| | | else { |
| | | net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | //set_batch_network(&net, 1); |
| | | fuse_conv_batchnorm(net); |
| | | calculate_binary_weights(net); |
| | | } |
| | | if (net.layers[net.n - 1].classes != names_size) { |
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", |
| | | name_list, names_size, net.layers[net.n - 1].classes, cfgfile); |
| | | getchar(); |
| | | } |
| | | srand(time(0)); |
| | | printf("\n calculation mAP (mean average precision)...\n"); |
| | | |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | char **paths_dif = NULL; |
| | | if (difficult_valid_images) { |
| | | list *plist_dif = get_paths(difficult_valid_images); |
| | | paths_dif = (char **)list_to_array(plist_dif); |
| | | } |
| | | |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | layer lk = net.layers[k]; |
| | | if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { |
| | | l = lk; |
| | | printf(" Detection layer: %d - type = %d \n", k, l.type); |
| | | } |
| | | } |
| | | int classes = l.classes; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int t; |
| | | |
| | | const float thresh = .005; |
| | | const float nms = .45; |
| | | //const float iou_thresh = 0.5; |
| | | |
| | | int nthreads = 4; |
| | | if (m < 4) nthreads = m; |
| | | image* val = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* buf = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); |
| | | pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); |
| | | |
| | | load_args args = { 0 }; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.c = net.c; |
| | | letter_box = net.letter_box; |
| | | if (letter_box) args.type = LETTERBOX_DATA; |
| | | else args.type = IMAGE_DATA; |
| | | |
| | | //const float thresh_calc_avg_iou = 0.24; |
| | | float avg_iou = 0; |
| | | int tp_for_thresh = 0; |
| | | int fp_for_thresh = 0; |
| | | |
| | | box_prob* detections = (box_prob*)xcalloc(1, sizeof(box_prob)); |
| | | int detections_count = 0; |
| | | int unique_truth_count = 0; |
| | | |
| | | int* truth_classes_count = (int*)xcalloc(classes, sizeof(int)); |
| | | |
| | | // For multi-class precision and recall computation |
| | | float *avg_iou_per_class = (float*)xcalloc(classes, sizeof(float)); |
| | | int *tp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int)); |
| | | int *fp_for_thresh_per_class = (int*)xcalloc(classes, sizeof(int)); |
| | | |
| | | for (t = 0; t < nthreads; ++t) { |
| | | args.path = paths[i + t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | time_t start = time(0); |
| | | for (i = nthreads; i < m + nthreads; i += nthreads) { |
| | | fprintf(stderr, "\r%d", i); |
| | | for (t = 0; t < nthreads && (i + t - nthreads) < m; ++t) { |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | val_resized[t] = buf_resized[t]; |
| | | } |
| | | for (t = 0; t < nthreads && (i + t) < m; ++t) { |
| | | args.path = paths[i + t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
| | | const int image_index = i + t - nthreads; |
| | | char *path = paths[image_index]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | network_predict(net, X); |
| | | |
| | | int nboxes = 0; |
| | | float hier_thresh = 0; |
| | | detection *dets; |
| | | if (args.type == LETTERBOX_DATA) { |
| | | dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); |
| | | } |
| | | else { |
| | | dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letter_box); |
| | | } |
| | | //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); // for letter_box=1 |
| | | if (nms) { |
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); |
| | | } |
| | | |
| | | //if (l.embedding_size) set_track_id(dets, nboxes, thresh, l.sim_thresh, l.track_ciou_norm, l.track_history_size, l.dets_for_track, l.dets_for_show); |
| | | |
| | | char labelpath[4096]; |
| | | replace_image_to_label(path, labelpath); |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | int j; |
| | | for (j = 0; j < num_labels; ++j) { |
| | | truth_classes_count[truth[j].id]++; |
| | | } |
| | | |
| | | // difficult |
| | | box_label *truth_dif = NULL; |
| | | int num_labels_dif = 0; |
| | | if (paths_dif) |
| | | { |
| | | char *path_dif = paths_dif[image_index]; |
| | | |
| | | char labelpath_dif[4096]; |
| | | replace_image_to_label(path_dif, labelpath_dif); |
| | | |
| | | truth_dif = read_boxes(labelpath_dif, &num_labels_dif); |
| | | } |
| | | |
| | | const int checkpoint_detections_count = detections_count; |
| | | |
| | | int i; |
| | | for (i = 0; i < nboxes; ++i) { |
| | | |
| | | int class_id; |
| | | for (class_id = 0; class_id < classes; ++class_id) { |
| | | float prob = dets[i].prob[class_id]; |
| | | if (prob > 0) { |
| | | detections_count++; |
| | | detections = (box_prob*)xrealloc(detections, detections_count * sizeof(box_prob)); |
| | | detections[detections_count - 1].b = dets[i].bbox; |
| | | detections[detections_count - 1].p = prob; |
| | | detections[detections_count - 1].image_index = image_index; |
| | | detections[detections_count - 1].class_id = class_id; |
| | | detections[detections_count - 1].truth_flag = 0; |
| | | detections[detections_count - 1].unique_truth_index = -1; |
| | | |
| | | int truth_index = -1; |
| | | float max_iou = 0; |
| | | for (j = 0; j < num_labels; ++j) |
| | | { |
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
| | | //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", |
| | | // box_iou(dets[i].bbox, t), prob, class_id, truth[j].id); |
| | | float current_iou = box_iou(dets[i].bbox, t); |
| | | if (current_iou > iou_thresh && class_id == truth[j].id) { |
| | | if (current_iou > max_iou) { |
| | | max_iou = current_iou; |
| | | truth_index = unique_truth_count + j; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // best IoU |
| | | if (truth_index > -1) { |
| | | detections[detections_count - 1].truth_flag = 1; |
| | | detections[detections_count - 1].unique_truth_index = truth_index; |
| | | } |
| | | else { |
| | | // if object is difficult then remove detection |
| | | for (j = 0; j < num_labels_dif; ++j) { |
| | | box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; |
| | | float current_iou = box_iou(dets[i].bbox, t); |
| | | if (current_iou > iou_thresh && class_id == truth_dif[j].id) { |
| | | --detections_count; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // calc avg IoU, true-positives, false-positives for required Threshold |
| | | if (prob > thresh_calc_avg_iou) { |
| | | int z, found = 0; |
| | | for (z = checkpoint_detections_count; z < detections_count - 1; ++z) { |
| | | if (detections[z].unique_truth_index == truth_index) { |
| | | found = 1; break; |
| | | } |
| | | } |
| | | |
| | | if (truth_index > -1 && found == 0) { |
| | | avg_iou += max_iou; |
| | | ++tp_for_thresh; |
| | | avg_iou_per_class[class_id] += max_iou; |
| | | tp_for_thresh_per_class[class_id]++; |
| | | } |
| | | else{ |
| | | fp_for_thresh++; |
| | | fp_for_thresh_per_class[class_id]++; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | unique_truth_count += num_labels; |
| | | |
| | | //static int previous_errors = 0; |
| | | //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh); |
| | | //int errors_in_this_image = total_errors - previous_errors; |
| | | //previous_errors = total_errors; |
| | | //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb"); |
| | | //char buff[1000]; |
| | | //sprintf(buff, "%s\n", path); |
| | | //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd); |
| | | |
| | | free_detections(dets, nboxes); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | | } |
| | | |
| | | //for (t = 0; t < nthreads; ++t) { |
| | | // pthread_join(thr[t], 0); |
| | | //} |
| | | |
| | | if ((tp_for_thresh + fp_for_thresh) > 0) |
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); |
| | | |
| | | int class_id; |
| | | for(class_id = 0; class_id < classes; class_id++){ |
| | | if ((tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]) > 0) |
| | | avg_iou_per_class[class_id] = avg_iou_per_class[class_id] / (tp_for_thresh_per_class[class_id] + fp_for_thresh_per_class[class_id]); |
| | | } |
| | | |
| | | // SORT(detections) |
| | | qsort(detections, detections_count, sizeof(box_prob), detections_comparator); |
| | | |
| | | typedef struct { |
| | | double precision; |
| | | double recall; |
| | | int tp, fp, fn; |
| | | } pr_t; |
| | | |
| | | // for PR-curve |
| | | pr_t** pr = (pr_t**)xcalloc(classes, sizeof(pr_t*)); |
| | | for (i = 0; i < classes; ++i) { |
| | | pr[i] = (pr_t*)xcalloc(detections_count, sizeof(pr_t)); |
| | | } |
| | | printf("\n detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); |
| | | |
| | | |
| | | int* detection_per_class_count = (int*)xcalloc(classes, sizeof(int)); |
| | | for (j = 0; j < detections_count; ++j) { |
| | | detection_per_class_count[detections[j].class_id]++; |
| | | } |
| | | |
| | | int* truth_flags = (int*)xcalloc(unique_truth_count, sizeof(int)); |
| | | |
| | | int rank; |
| | | for (rank = 0; rank < detections_count; ++rank) { |
| | | if (rank % 100 == 0) |
| | | printf(" rank = %d of ranks = %d \r", rank, detections_count); |
| | | |
| | | if (rank > 0) { |
| | | int class_id; |
| | | for (class_id = 0; class_id < classes; ++class_id) { |
| | | pr[class_id][rank].tp = pr[class_id][rank - 1].tp; |
| | | pr[class_id][rank].fp = pr[class_id][rank - 1].fp; |
| | | } |
| | | } |
| | | |
| | | box_prob d = detections[rank]; |
| | | // if (detected && isn't detected before) |
| | | if (d.truth_flag == 1) { |
| | | if (truth_flags[d.unique_truth_index] == 0) |
| | | { |
| | | truth_flags[d.unique_truth_index] = 1; |
| | | pr[d.class_id][rank].tp++; // true-positive |
| | | } else |
| | | pr[d.class_id][rank].fp++; |
| | | } |
| | | else { |
| | | pr[d.class_id][rank].fp++; // false-positive |
| | | } |
| | | |
| | | for (i = 0; i < classes; ++i) |
| | | { |
| | | const int tp = pr[i][rank].tp; |
| | | const int fp = pr[i][rank].fp; |
| | | const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive |
| | | pr[i][rank].fn = fn; |
| | | |
| | | if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); |
| | | else pr[i][rank].precision = 0; |
| | | |
| | | if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); |
| | | else pr[i][rank].recall = 0; |
| | | |
| | | if (rank == (detections_count - 1) && detection_per_class_count[i] != (tp + fp)) { // check for last rank |
| | | printf(" class_id: %d - detections = %d, tp+fp = %d, tp = %d, fp = %d \n", i, detection_per_class_count[i], tp+fp, tp, fp); |
| | | } |
| | | } |
| | | } |
| | | |
| | | free(truth_flags); |
| | | |
| | | |
| | | double mean_average_precision = 0; |
| | | |
| | | for (i = 0; i < classes; ++i) { |
| | | double avg_precision = 0; |
| | | |
| | | // MS COCO - uses 101-Recall-points on PR-chart. |
| | | // PascalVOC2007 - uses 11-Recall-points on PR-chart. |
| | | // PascalVOC2010-2012 - uses Area-Under-Curve on PR-chart. |
| | | // ImageNet - uses Area-Under-Curve on PR-chart. |
| | | |
| | | // correct mAP calculation: ImageNet, PascalVOC 2010-2012 |
| | | if (map_points == 0) |
| | | { |
| | | double last_recall = pr[i][detections_count - 1].recall; |
| | | double last_precision = pr[i][detections_count - 1].precision; |
| | | for (rank = detections_count - 2; rank >= 0; --rank) |
| | | { |
| | | double delta_recall = last_recall - pr[i][rank].recall; |
| | | last_recall = pr[i][rank].recall; |
| | | |
| | | if (pr[i][rank].precision > last_precision) { |
| | | last_precision = pr[i][rank].precision; |
| | | } |
| | | |
| | | avg_precision += delta_recall * last_precision; |
| | | } |
| | | //add remaining area of PR curve when recall isn't 0 at rank-1 |
| | | double delta_recall = last_recall - 0; |
| | | avg_precision += delta_recall * last_precision; |
| | | } |
| | | // MSCOCO - 101 Recall-points, PascalVOC - 11 Recall-points |
| | | else |
| | | { |
| | | int point; |
| | | for (point = 0; point < map_points; ++point) { |
| | | double cur_recall = point * 1.0 / (map_points-1); |
| | | double cur_precision = 0; |
| | | for (rank = 0; rank < detections_count; ++rank) |
| | | { |
| | | if (pr[i][rank].recall >= cur_recall) { // > or >= |
| | | if (pr[i][rank].precision > cur_precision) { |
| | | cur_precision = pr[i][rank].precision; |
| | | } |
| | | } |
| | | } |
| | | //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); |
| | | |
| | | avg_precision += cur_precision; |
| | | } |
| | | avg_precision = avg_precision / map_points; |
| | | } |
| | | |
| | | printf("class_id = %d, name = %s, ap = %2.2f%% \t (TP = %d, FP = %d) \n", |
| | | i, names[i], avg_precision * 100, tp_for_thresh_per_class[i], fp_for_thresh_per_class[i]); |
| | | |
| | | float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]); |
| | | float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i])); |
| | | //printf("Precision = %1.2f, Recall = %1.2f, avg IOU = %2.2f%% \n\n", class_precision, class_recall, avg_iou_per_class[i]); |
| | | |
| | | mean_average_precision += avg_precision; |
| | | } |
| | | |
| | | const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); |
| | | const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); |
| | | const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); |
| | | printf("\n for conf_thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", |
| | | thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); |
| | | |
| | | printf(" for conf_thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", |
| | | thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); |
| | | |
| | | mean_average_precision = mean_average_precision / classes; |
| | | printf("\n IoU threshold = %2.0f %%, ", iou_thresh * 100); |
| | | if (map_points) printf("used %d Recall-points \n", map_points); |
| | | else printf("used Area-Under-Curve for each unique Recall \n"); |
| | | |
| | | printf(" mean average precision (mAP@%0.2f) = %f, or %2.2f %% \n", iou_thresh, mean_average_precision, mean_average_precision * 100); |
| | | |
| | | for (i = 0; i < classes; ++i) { |
| | | free(pr[i]); |
| | | } |
| | | free(pr); |
| | | free(detections); |
| | | free(truth_classes_count); |
| | | free(detection_per_class_count); |
| | | |
| | | free(avg_iou_per_class); |
| | | free(tp_for_thresh_per_class); |
| | | free(fp_for_thresh_per_class); |
| | | |
| | | fprintf(stderr, "Total Detection Time: %d Seconds\n", (int)(time(0) - start)); |
| | | printf("\nSet -points flag:\n"); |
| | | printf(" `-points 101` for MS COCO \n"); |
| | | printf(" `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) \n"); |
| | | printf(" `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset\n"); |
| | | if (reinforcement_fd != NULL) fclose(reinforcement_fd); |
| | | |
| | | // free memory |
| | | free_ptrs((void**)names, net.layers[net.n - 1].classes); |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | |
| | | if (existing_net) { |
| | | //set_batch_network(&net, initial_batch); |
| | | //free_network_recurrent_state(*existing_net); |
| | | restore_network_recurrent_state(*existing_net); |
| | | //randomize_network_recurrent_state(*existing_net); |
| | | } |
| | | else { |
| | | free_network(net); |
| | | } |
| | | if (val) free(val); |
| | | if (val_resized) free(val_resized); |
| | | if (thr) free(thr); |
| | | if (buf) free(buf); |
| | | if (buf_resized) free(buf_resized); |
| | | |
| | | return mean_average_precision; |
| | | } |
| | | |
| | | typedef struct { |
| | | float w, h; |
| | | } anchors_t; |
| | | |
| | | int anchors_comparator(const void *pa, const void *pb) |
| | | { |
| | | anchors_t a = *(const anchors_t *)pa; |
| | | anchors_t b = *(const anchors_t *)pb; |
| | | float diff = b.w*b.h - a.w*a.h; |
| | | if (diff < 0) return 1; |
| | | else if (diff > 0) return -1; |
| | | return 0; |
| | | } |
| | | |
| | | int anchors_data_comparator(const float **pa, const float **pb) |
| | | { |
| | | float *a = (float *)*pa; |
| | | float *b = (float *)*pb; |
| | | float diff = b[0] * b[1] - a[0] * a[1]; |
| | | if (diff < 0) return 1; |
| | | else if (diff > 0) return -1; |
| | | return 0; |
| | | } |
| | | |
| | | |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) |
| | | { |
| | | printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height); |
| | | if (width < 0 || height < 0) { |
| | | printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n"); |
| | | printf("Error: set width and height \n"); |
| | | return; |
| | | } |
| | | |
| | | //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; |
| | | float* rel_width_height_array = (float*)xcalloc(1000, sizeof(float)); |
| | | |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.list"); |
| | | list *plist = get_paths(train_images); |
| | | int number_of_images = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int* counter_per_class = (int*)xcalloc(classes, sizeof(int)); |
| | | |
| | | srand(time(0)); |
| | | int number_of_boxes = 0; |
| | | printf(" read labels from %d images \n", number_of_images); |
| | | |
| | | int i, j; |
| | | for (i = 0; i < number_of_images; ++i) { |
| | | char *path = paths[i]; |
| | | char labelpath[4096]; |
| | | replace_image_to_label(path, labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | //printf(" new path: %s \n", labelpath); |
| | | char *buff = (char*)xcalloc(6144, sizeof(char)); |
| | | for (j = 0; j < num_labels; ++j) |
| | | { |
| | | if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 || |
| | | truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0) |
| | | { |
| | | printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n", |
| | | labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); |
| | | sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list", |
| | | labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); |
| | | system(buff); |
| | | if (check_mistakes) getchar(); |
| | | } |
| | | if (truth[j].id >= classes) { |
| | | classes = truth[j].id + 1; |
| | | counter_per_class = (int*)xrealloc(counter_per_class, classes * sizeof(int)); |
| | | } |
| | | counter_per_class[truth[j].id]++; |
| | | |
| | | number_of_boxes++; |
| | | rel_width_height_array = (float*)xrealloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); |
| | | |
| | | rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width; |
| | | rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height; |
| | | printf("\r loaded \t image: %d \t box: %d", i + 1, number_of_boxes); |
| | | } |
| | | free(buff); |
| | | } |
| | | printf("\n all loaded. \n"); |
| | | printf("\n calculating k-means++ ..."); |
| | | |
| | | matrix boxes_data; |
| | | model anchors_data; |
| | | boxes_data = make_matrix(number_of_boxes, 2); |
| | | |
| | | printf("\n"); |
| | | for (i = 0; i < number_of_boxes; ++i) { |
| | | boxes_data.vals[i][0] = rel_width_height_array[i * 2]; |
| | | boxes_data.vals[i][1] = rel_width_height_array[i * 2 + 1]; |
| | | //if (w > 410 || h > 410) printf("i:%d, w = %f, h = %f \n", i, w, h); |
| | | } |
| | | |
| | | // Is used: distance(box, centroid) = 1 - IoU(box, centroid) |
| | | |
| | | // K-means |
| | | anchors_data = do_kmeans(boxes_data, num_of_clusters); |
| | | |
| | | qsort((void*)anchors_data.centers.vals, num_of_clusters, 2 * sizeof(float), (__compar_fn_t)anchors_data_comparator); |
| | | |
| | | //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 |
| | | //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; |
| | | |
| | | printf("\n"); |
| | | float avg_iou = 0; |
| | | for (i = 0; i < number_of_boxes; ++i) { |
| | | float box_w = rel_width_height_array[i * 2]; //points->data.fl[i * 2]; |
| | | float box_h = rel_width_height_array[i * 2 + 1]; //points->data.fl[i * 2 + 1]; |
| | | //int cluster_idx = labels->data.i[i]; |
| | | int cluster_idx = 0; |
| | | float min_dist = FLT_MAX; |
| | | float best_iou = 0; |
| | | for (j = 0; j < num_of_clusters; ++j) { |
| | | float anchor_w = anchors_data.centers.vals[j][0]; // centers->data.fl[j * 2]; |
| | | float anchor_h = anchors_data.centers.vals[j][1]; // centers->data.fl[j * 2 + 1]; |
| | | float min_w = (box_w < anchor_w) ? box_w : anchor_w; |
| | | float min_h = (box_h < anchor_h) ? box_h : anchor_h; |
| | | float box_intersect = min_w*min_h; |
| | | float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; |
| | | float iou = box_intersect / box_union; |
| | | float distance = 1 - iou; |
| | | if (distance < min_dist) { |
| | | min_dist = distance; |
| | | cluster_idx = j; |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | |
| | | float anchor_w = anchors_data.centers.vals[cluster_idx][0]; //centers->data.fl[cluster_idx * 2]; |
| | | float anchor_h = anchors_data.centers.vals[cluster_idx][1]; //centers->data.fl[cluster_idx * 2 + 1]; |
| | | if (best_iou > 1 || best_iou < 0) { // || box_w > width || box_h > height) { |
| | | printf(" Wrong label: i = %d, box_w = %f, box_h = %f, anchor_w = %f, anchor_h = %f, iou = %f \n", |
| | | i, box_w, box_h, anchor_w, anchor_h, best_iou); |
| | | } |
| | | else avg_iou += best_iou; |
| | | } |
| | | |
| | | char buff[1024]; |
| | | FILE* fwc = fopen("counters_per_class.txt", "wb"); |
| | | if (fwc) { |
| | | sprintf(buff, "counters_per_class = "); |
| | | printf("\n%s", buff); |
| | | fwrite(buff, sizeof(char), strlen(buff), fwc); |
| | | for (i = 0; i < classes; ++i) { |
| | | sprintf(buff, "%d", counter_per_class[i]); |
| | | printf("%s", buff); |
| | | fwrite(buff, sizeof(char), strlen(buff), fwc); |
| | | if (i < classes - 1) { |
| | | fwrite(", ", sizeof(char), 2, fwc); |
| | | printf(", "); |
| | | } |
| | | } |
| | | printf("\n"); |
| | | fclose(fwc); |
| | | } |
| | | else { |
| | | printf(" Error: file counters_per_class.txt can't be open \n"); |
| | | } |
| | | |
| | | avg_iou = 100 * avg_iou / number_of_boxes; |
| | | printf("\n avg IoU = %2.2f %% \n", avg_iou); |
| | | |
| | | |
| | | FILE* fw = fopen("anchors.txt", "wb"); |
| | | if (fw) { |
| | | printf("\nSaving anchors to the file: anchors.txt \n"); |
| | | printf("anchors = "); |
| | | for (i = 0; i < num_of_clusters; ++i) { |
| | | float anchor_w = anchors_data.centers.vals[i][0]; //centers->data.fl[i * 2]; |
| | | float anchor_h = anchors_data.centers.vals[i][1]; //centers->data.fl[i * 2 + 1]; |
| | | if (width > 32) sprintf(buff, "%3.0f,%3.0f", anchor_w, anchor_h); |
| | | else sprintf(buff, "%2.4f,%2.4f", anchor_w, anchor_h); |
| | | printf("%s", buff); |
| | | fwrite(buff, sizeof(char), strlen(buff), fw); |
| | | if (i + 1 < num_of_clusters) { |
| | | fwrite(", ", sizeof(char), 2, fw); |
| | | printf(", "); |
| | | } |
| | | } |
| | | printf("\n"); |
| | | fclose(fw); |
| | | } |
| | | else { |
| | | printf(" Error: file anchors.txt can't be open \n"); |
| | | } |
| | | |
| | | if (show) { |
| | | #ifdef OPENCV |
| | | show_acnhors(number_of_boxes, num_of_clusters, rel_width_height_array, anchors_data, width, height); |
| | | #endif // OPENCV |
| | | } |
| | | free(rel_width_height_array); |
| | | free(counter_per_class); |
| | | |
| | | getchar(); |
| | | } |
| | | |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, |
| | | float hier_thresh, int dont_show, int ext_output, int save_labels, char *outfile, int letter_box, int benchmark_layers) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | int names_size = 0; |
| | | char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if (net.letter_box) letter_box = 1; |
| | | net.benchmark_layers = benchmark_layers; |
| | | fuse_conv_batchnorm(net); |
| | | calculate_binary_weights(net); |
| | | if (net.layers[net.n - 1].classes != names_size) { |
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", |
| | | name_list, names_size, net.layers[net.n - 1].classes, cfgfile); |
| | | if (net.layers[net.n - 1].classes > names_size) getchar(); |
| | | } |
| | | srand(2222222); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | char *json_buf = NULL; |
| | | int json_image_id = 0; |
| | | FILE* json_file = NULL; |
| | | if (outfile) { |
| | | json_file = fopen(outfile, "wb"); |
| | | if(!json_file) { |
| | | error("fopen failed"); |
| | | } |
| | | char *tmp = "[\n"; |
| | | fwrite(tmp, sizeof(char), strlen(tmp), json_file); |
| | | } |
| | | int j; |
| | | float nms = .45; // 0.4F |
| | | while (1) { |
| | | if (filename) { |
| | | strncpy(input, filename, 256); |
| | | if (strlen(input) > 0) |
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; |
| | | } |
| | | else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if (!input) break; |
| | | strtok(input, "\n"); |
| | | } |
| | | //image im; |
| | | //image sized = load_image_resize(input, net.w, net.h, net.c, &im); |
| | | image im = load_image(input, 0, 0, net.c); |
| | | image sized; |
| | | if(letter_box) sized = letterbox_image(im, net.w, net.h); |
| | | else sized = resize_image(im, net.w, net.h); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | layer lk = net.layers[k]; |
| | | if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { |
| | | l = lk; |
| | | printf(" Detection layer: %d - type = %d \n", k, l.type); |
| | | } |
| | | } |
| | | |
| | | //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | //float **probs = calloc(l.w*l.h*l.n, sizeof(float*)); |
| | | //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float)); |
| | | |
| | | float *X = sized.data; |
| | | |
| | | //time= what_time_is_it_now(); |
| | | double time = get_time_point(); |
| | | network_predict(net, X); |
| | | //network_predict_image(&net, im); letterbox = 1; |
| | | printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000); |
| | | //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time)); |
| | | |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter_box); |
| | | if (nms) { |
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); |
| | | } |
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); |
| | | save_image(im, "predictions"); |
| | | if (!dont_show) { |
| | | show_image(im, "predictions"); |
| | | } |
| | | |
| | | if (json_file) { |
| | | if (json_buf) { |
| | | char *tmp = ", \n"; |
| | | fwrite(tmp, sizeof(char), strlen(tmp), json_file); |
| | | } |
| | | ++json_image_id; |
| | | json_buf = detection_to_json(dets, nboxes, l.classes, names, json_image_id, input); |
| | | |
| | | fwrite(json_buf, sizeof(char), strlen(json_buf), json_file); |
| | | free(json_buf); |
| | | } |
| | | |
| | | // pseudo labeling concept - fast.ai |
| | | if (save_labels) |
| | | { |
| | | char labelpath[4096]; |
| | | replace_image_to_label(input, labelpath); |
| | | |
| | | FILE* fw = fopen(labelpath, "wb"); |
| | | int i; |
| | | for (i = 0; i < nboxes; ++i) { |
| | | char buff[1024]; |
| | | int class_id = -1; |
| | | float prob = 0; |
| | | for (j = 0; j < l.classes; ++j) { |
| | | if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) { |
| | | prob = dets[i].prob[j]; |
| | | class_id = j; |
| | | } |
| | | } |
| | | if (class_id >= 0) { |
| | | sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h); |
| | | fwrite(buff, sizeof(char), strlen(buff), fw); |
| | | } |
| | | } |
| | | fclose(fw); |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | free_image(im); |
| | | free_image(sized); |
| | | |
| | | if (!dont_show) { |
| | | wait_until_press_key_cv(); |
| | | destroy_all_windows_cv(); |
| | | } |
| | | |
| | | if (filename) break; |
| | | } |
| | | |
| | | if (json_file) { |
| | | char *tmp = "\n]"; |
| | | fwrite(tmp, sizeof(char), strlen(tmp), json_file); |
| | | fclose(json_file); |
| | | } |
| | | |
| | | // free memory |
| | | free_ptrs((void**)names, net.layers[net.n - 1].classes); |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | |
| | | int i; |
| | | const int nsize = 8; |
| | | for (j = 0; j < nsize; ++j) { |
| | | for (i = 32; i < 127; ++i) { |
| | | free_image(alphabet[j][i]); |
| | | } |
| | | free(alphabet[j]); |
| | | } |
| | | free(alphabet); |
| | | |
| | | free_network(net); |
| | | } |
| | | |
| | | #if defined(OPENCV) && defined(GPU) |
| | | |
| | | // adversarial attack dnn |
| | | void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num, |
| | | int letter_box, int benchmark_layers) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | int names_size = 0; |
| | | char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile);// parse_network_cfg_custom(cfgfile, 1, 1); // set batch=1 |
| | | net.adversarial = 1; |
| | | set_batch_network(&net, 1); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.benchmark_layers = benchmark_layers; |
| | | //fuse_conv_batchnorm(net); |
| | | //calculate_binary_weights(net); |
| | | if (net.layers[net.n - 1].classes != names_size) { |
| | | printf("\n Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", |
| | | name_list, names_size, net.layers[net.n - 1].classes, cfgfile); |
| | | if (net.layers[net.n - 1].classes > names_size) getchar(); |
| | | } |
| | | |
| | | srand(2222222); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | |
| | | int j; |
| | | float nms = .45; // 0.4F |
| | | while (1) { |
| | | if (filename) { |
| | | strncpy(input, filename, 256); |
| | | if (strlen(input) > 0) |
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; |
| | | } |
| | | else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if (!input) break; |
| | | strtok(input, "\n"); |
| | | } |
| | | //image im; |
| | | //image sized = load_image_resize(input, net.w, net.h, net.c, &im); |
| | | image im = load_image(input, 0, 0, net.c); |
| | | image sized; |
| | | if (letter_box) sized = letterbox_image(im, net.w, net.h); |
| | | else sized = resize_image(im, net.w, net.h); |
| | | |
| | | image src_sized = copy_image(sized); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | layer lk = net.layers[k]; |
| | | if (lk.type == YOLO || lk.type == GAUSSIAN_YOLO || lk.type == REGION) { |
| | | l = lk; |
| | | printf(" Detection layer: %d - type = %d \n", k, l.type); |
| | | } |
| | | } |
| | | |
| | | net.num_boxes = l.max_boxes; |
| | | int num_truth = l.truths; |
| | | float *truth_cpu = (float *)xcalloc(num_truth, sizeof(float)); |
| | | |
| | | int *it_num_set = (int *)xcalloc(1, sizeof(int)); |
| | | float *lr_set = (float *)xcalloc(1, sizeof(float)); |
| | | int *boxonly = (int *)xcalloc(1, sizeof(int)); |
| | | |
| | | cv_draw_object(sized, truth_cpu, net.num_boxes, num_truth, it_num_set, lr_set, boxonly, l.classes, names); |
| | | |
| | | net.learning_rate = *lr_set; |
| | | it_num = *it_num_set; |
| | | |
| | | float *X = sized.data; |
| | | |
| | | mat_cv* img = NULL; |
| | | float max_img_loss = 5; |
| | | int number_of_lines = 100; |
| | | int img_size = 1000; |
| | | char windows_name[100]; |
| | | char *base = basecfg(cfgfile); |
| | | sprintf(windows_name, "chart_%s.png", base); |
| | | img = draw_train_chart(windows_name, max_img_loss, it_num, number_of_lines, img_size, dont_show, NULL); |
| | | |
| | | int iteration; |
| | | for (iteration = 0; iteration < it_num; ++iteration) |
| | | { |
| | | forward_backward_network_gpu(net, X, truth_cpu); |
| | | |
| | | float avg_loss = get_network_cost(net); |
| | | draw_train_loss(windows_name, img, img_size, avg_loss, max_img_loss, iteration, it_num, 0, 0, "mAP%", 0, dont_show, 0, 0); |
| | | |
| | | float inv_loss = 1.0 / max_val_cmp(0.01, avg_loss); |
| | | //net.learning_rate = *lr_set * inv_loss; |
| | | |
| | | if (*boxonly) { |
| | | int dw = truth_cpu[2] * sized.w, dh = truth_cpu[3] * sized.h; |
| | | int dx = truth_cpu[0] * sized.w - dw / 2, dy = truth_cpu[1] * sized.h - dh / 2; |
| | | image crop = crop_image(sized, dx, dy, dw, dh); |
| | | copy_image_inplace(src_sized, sized); |
| | | embed_image(crop, sized, dx, dy); |
| | | } |
| | | |
| | | show_image_cv(sized, "image_optimization"); |
| | | wait_key_cv(20); |
| | | } |
| | | |
| | | net.train = 0; |
| | | quantize_image(sized); |
| | | network_predict(net, X); |
| | | |
| | | save_image_png(sized, "drawn"); |
| | | //sized = load_image("drawn.png", 0, 0, net.c); |
| | | |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, 0, 0, 1, &nboxes, letter_box); |
| | | if (nms) { |
| | | if (l.nms_kind == DEFAULT_NMS) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | else diounms_sort(dets, nboxes, l.classes, nms, l.nms_kind, l.beta_nms); |
| | | } |
| | | draw_detections_v3(sized, dets, nboxes, thresh, names, alphabet, l.classes, 1); |
| | | save_image(sized, "pre_predictions"); |
| | | if (!dont_show) { |
| | | show_image(sized, "pre_predictions"); |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | free_image(im); |
| | | free_image(sized); |
| | | free_image(src_sized); |
| | | |
| | | if (!dont_show) { |
| | | wait_until_press_key_cv(); |
| | | destroy_all_windows_cv(); |
| | | } |
| | | |
| | | free(lr_set); |
| | | free(it_num_set); |
| | | |
| | | if (filename) break; |
| | | } |
| | | |
| | | // free memory |
| | | free_ptrs((void**)names, net.layers[net.n - 1].classes); |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | |
| | | int i; |
| | | const int nsize = 8; |
| | | for (j = 0; j < nsize; ++j) { |
| | | for (i = 32; i < 127; ++i) { |
| | | free_image(alphabet[j][i]); |
| | | } |
| | | free(alphabet[j]); |
| | | } |
| | | free(alphabet); |
| | | |
| | | free_network(net); |
| | | } |
| | | #else // defined(OPENCV) && defined(GPU) |
| | | void draw_object(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show, int it_num, |
| | | int letter_box, int benchmark_layers) |
| | | { |
| | | printf(" ./darknet detector draw ... can't be used without OpenCV and CUDA! \n"); |
| | | getchar(); |
| | | } |
| | | #endif // defined(OPENCV) && defined(GPU) |
| | | |
| | | void run_detector(int argc, char **argv) |
| | | { |
| | | int dont_show = find_arg(argc, argv, "-dont_show"); |
| | | int benchmark = find_arg(argc, argv, "-benchmark"); |
| | | int benchmark_layers = find_arg(argc, argv, "-benchmark_layers"); |
| | | //if (benchmark_layers) benchmark = 1; |
| | | if (benchmark) dont_show = 1; |
| | | int show = find_arg(argc, argv, "-show"); |
| | | int letter_box = find_arg(argc, argv, "-letter_box"); |
| | | int calc_map = find_arg(argc, argv, "-map"); |
| | | int map_points = find_int_arg(argc, argv, "-points", 0); |
| | | check_mistakes = find_arg(argc, argv, "-check_mistakes"); |
| | | int show_imgs = find_arg(argc, argv, "-show_imgs"); |
| | | int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); |
| | | int avgframes = find_int_arg(argc, argv, "-avgframes", 3); |
| | | int dontdraw_bbox = find_arg(argc, argv, "-dontdraw_bbox"); |
| | | int json_port = find_int_arg(argc, argv, "-json_port", -1); |
| | | char *http_post_host = find_char_arg(argc, argv, "-http_post_host", 0); |
| | | int time_limit_sec = find_int_arg(argc, argv, "-time_limit_sec", 0); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *outfile = find_char_arg(argc, argv, "-out", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24 |
| | | float iou_thresh = find_float_arg(argc, argv, "-iou_thresh", .5); // 0.5 for mAP |
| | | float hier_thresh = find_float_arg(argc, argv, "-hier", .5); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
| | | int width = find_int_arg(argc, argv, "-width", -1); |
| | | int height = find_int_arg(argc, argv, "-height", -1); |
| | | // extended output in test mode (output of rect bound coords) |
| | | // and for recall mode (extended output table-like format with results for best_class fit) |
| | | int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | int save_labels = find_arg(argc, argv, "-save_labels"); |
| | | char* chart_path = find_char_arg(argc, argv, "-chart", 0); |
| | | if (argc < 4) { |
| | | fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
| | | int *gpus = 0; |
| | | int gpu = 0; |
| | | int ngpus = 0; |
| | | if (gpu_list) { |
| | | printf("%s\n", gpu_list); |
| | | int len = (int)strlen(gpu_list); |
| | | ngpus = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (gpu_list[i] == ',') ++ngpus; |
| | | } |
| | | gpus = (int*)xcalloc(ngpus, sizeof(int)); |
| | | for (i = 0; i < ngpus; ++i) { |
| | | gpus[i] = atoi(gpu_list); |
| | | gpu_list = strchr(gpu_list, ',') + 1; |
| | | } |
| | | } |
| | | else { |
| | | gpu = gpu_index; |
| | | gpus = &gpu; |
| | | ngpus = 1; |
| | | } |
| | | |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | |
| | | char *datacfg = argv[3]; |
| | | char *cfg = argv[4]; |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | | if (weights) |
| | | if (strlen(weights) > 0) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6] : 0; |
| | | if (0 == strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels, outfile, letter_box, benchmark_layers); |
| | | else if (0 == strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show, calc_map, mjpeg_port, show_imgs, benchmark_layers, chart_path); |
| | | else if (0 == strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); |
| | | else if (0 == strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if (0 == strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh, iou_thresh, map_points, letter_box, NULL); |
| | | else if (0 == strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show); |
| | | else if (0 == strcmp(argv[2], "draw")) { |
| | | int it_num = 100; |
| | | draw_object(datacfg, cfg, weights, filename, thresh, dont_show, it_num, letter_box, benchmark_layers); |
| | | } |
| | | else if (0 == strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | if (filename) |
| | | if (strlen(filename) > 0) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, avgframes, frame_skip, prefix, out_filename, |
| | | mjpeg_port, dontdraw_bbox, json_port, dont_show, ext_output, letter_box, time_limit_sec, http_post_host, benchmark, benchmark_layers); |
| | | |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | } |
| | | else printf(" There isn't such command: %s", argv[2]); |
| | | |
| | | if (gpus && gpu_list && ngpus > 1) free(gpus); |
| | | } |