| | |
| | | #include "darknet.h"
|
| | | #include <cuda_runtime.h>
|
| | | #include <curand.h>
|
| | | #include <cublas_v2.h>
|
| | | #include <float.h>
|
| | |
|
| | | #include "activations.h"
|
| | | #include "dark_cuda.h"
|
| | |
|
| | | __device__ float lhtan_activate_kernel(float x)
|
| | | {
|
| | | if(x < 0) return .001*x;
|
| | | if(x > 1) return .001*(x-1) + 1;
|
| | | return x;
|
| | | }
|
| | | __device__ float lhtan_gradient_kernel(float x)
|
| | | {
|
| | | if(x > 0 && x < 1) return 1;
|
| | | return .001;
|
| | | }
|
| | |
|
| | | __device__ float hardtan_activate_kernel(float x)
|
| | | {
|
| | | if (x < -1) return -1;
|
| | | if (x > 1) return 1;
|
| | | return x;
|
| | | }
|
| | | __device__ float linear_activate_kernel(float x){return x;}
|
| | | __device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
|
| | | __device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
|
| | | __device__ float relu_activate_kernel(float x){return x*(x>0);}
|
| | | __device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); }
|
| | | __device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
|
| | | __device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); }
|
| | | __device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
|
| | | __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
|
| | | __device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
|
| | | __device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);}
|
| | | __device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));}
|
| | | __device__ float softplus_kernel(float x, float threshold = 20) {
|
| | | if (x > threshold) return x; // too large
|
| | | else if (x < -threshold) return expf(x); // too small
|
| | | return logf(expf(x) + 1);
|
| | | }
|
| | | __device__ float plse_activate_kernel(float x)
|
| | | {
|
| | | if(x < -4) return .01f * (x + 4);
|
| | | if(x > 4) return .01f * (x - 4) + 1;
|
| | | return .125f*x + .5f;
|
| | | }
|
| | | __device__ float stair_activate_kernel(float x)
|
| | | {
|
| | | int n = floorf(x);
|
| | | if (n%2 == 0) return floorf(x/2.f);
|
| | | else return (x - n) + floorf(x/2.f);
|
| | | }
|
| | |
|
| | |
|
| | | __device__ float hardtan_gradient_kernel(float x)
|
| | | {
|
| | | if (x > -1 && x < 1) return 1;
|
| | | return 0;
|
| | | }
|
| | | __device__ float linear_gradient_kernel(float x){return 1;}
|
| | | __device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
|
| | | __device__ float loggy_gradient_kernel(float x)
|
| | | {
|
| | | float y = (x+1.F)/2.F;
|
| | | return 2*(1-y)*y;
|
| | | }
|
| | | __device__ float relu_gradient_kernel(float x){return (x>0);}
|
| | | __device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); }
|
| | | __device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
|
| | | __device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); }
|
| | | __device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;}
|
| | | __device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;}
|
| | | __device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;}
|
| | | __device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
| | | __device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); }
|
| | | __device__ float gelu_gradient_kernel(float x) {
|
| | | const float x3 = powf(x, 3);
|
| | | return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5;
|
| | | }
|
| | | __device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;}
|
| | | __device__ float stair_gradient_kernel(float x)
|
| | | {
|
| | | if (floor(x) == x) return 0;
|
| | | return 1;
|
| | | }
|
| | |
|
| | | __device__ float activate_kernel(float x, ACTIVATION a)
|
| | | {
|
| | | switch(a){
|
| | | case LINEAR:
|
| | | return linear_activate_kernel(x);
|
| | | case LOGISTIC:
|
| | | return logistic_activate_kernel(x);
|
| | | case LOGGY:
|
| | | return loggy_activate_kernel(x);
|
| | | case RELU:
|
| | | return relu_activate_kernel(x);
|
| | | case RELU6:
|
| | | return relu6_activate_kernel(x);
|
| | | case ELU:
|
| | | return elu_activate_kernel(x);
|
| | | case SELU:
|
| | | return selu_activate_kernel(x);
|
| | | case GELU:
|
| | | return gelu_activate_kernel(x);
|
| | | case RELIE:
|
| | | return relie_activate_kernel(x);
|
| | | case RAMP:
|
| | | return ramp_activate_kernel(x);
|
| | | case LEAKY:
|
| | | return leaky_activate_kernel(x);
|
| | | case TANH:
|
| | | return tanh_activate_kernel(x);
|
| | | case PLSE:
|
| | | return plse_activate_kernel(x);
|
| | | case STAIR:
|
| | | return stair_activate_kernel(x);
|
| | | case HARDTAN:
|
| | | return hardtan_activate_kernel(x);
|
| | | case LHTAN:
|
| | | return lhtan_activate_kernel(x);
|
| | | }
|
| | | return 0;
|
| | | }
|
| | |
|
| | | __device__ float gradient_kernel(float x, ACTIVATION a)
|
| | | {
|
| | | switch (a) {
|
| | | case LINEAR:
|
| | | return linear_gradient_kernel(x);
|
| | | case LOGISTIC:
|
| | | return logistic_gradient_kernel(x);
|
| | | case LOGGY:
|
| | | return loggy_gradient_kernel(x);
|
| | | case RELU:
|
| | | return relu_gradient_kernel(x);
|
| | | case RELU6:
|
| | | return relu6_gradient_kernel(x);
|
| | | case NORM_CHAN:
|
| | | return relu_gradient_kernel(x);
|
| | | case ELU:
|
| | | return elu_gradient_kernel(x);
|
| | | case SELU:
|
| | | return selu_gradient_kernel(x);
|
| | | case GELU:
|
| | | return gelu_gradient_kernel(x);
|
| | | case RELIE:
|
| | | return relie_gradient_kernel(x);
|
| | | case RAMP:
|
| | | return ramp_gradient_kernel(x);
|
| | | case LEAKY:
|
| | | return leaky_gradient_kernel(x);
|
| | | case TANH:
|
| | | return tanh_gradient_kernel(x);
|
| | | case PLSE:
|
| | | return plse_gradient_kernel(x);
|
| | | case STAIR:
|
| | | return stair_gradient_kernel(x);
|
| | | case HARDTAN:
|
| | | return hardtan_gradient_kernel(x);
|
| | | case LHTAN:
|
| | | return lhtan_gradient_kernel(x);
|
| | | }
|
| | | return 0;
|
| | | }
|
| | |
|
| | | __global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
|
| | | {
|
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | int i = id % s;
|
| | | int b = id / s;
|
| | | float x1 = x[b*s + i];
|
| | | float x2 = x[b*s + s / 2 + i];
|
| | | if (id < n) {
|
| | | float de = dy[id];
|
| | | dx[b*s + i] = x2*de;
|
| | | dx[b*s + s / 2 + i] = x1*de;
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
|
| | | {
|
| | | binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | | __global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
|
| | | {
|
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | int i = id % s;
|
| | | int b = id / s;
|
| | | float x1 = x[b*s + i];
|
| | | float x2 = x[b*s + s / 2 + i];
|
| | | if (id < n) y[id] = x1*x2;
|
| | | }
|
| | |
|
| | | extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
|
| | | {
|
| | | binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | | __global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
| | | {
|
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | if(i < n) x[i] = activate_kernel(x[i], a);
|
| | | }
|
| | |
|
| | |
|
| | |
|
| | | __global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
|
| | | {
|
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | if (i < n) {
|
| | | float x_val = x[i];
|
| | | float sigmoid = logistic_activate_kernel(x_val);
|
| | | output_sigmoid_gpu[i] = sigmoid;
|
| | | output_gpu[i] = x_val * sigmoid;
|
| | | }
|
| | | }
|
| | |
|
| | | // https://github.com/digantamisra98/Mish
|
| | | __global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
|
| | | {
|
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | if (i < n) {
|
| | | const float MISH_THRESHOLD = 20;
|
| | | float x_val = x[i];
|
| | | activation_input[i] = x_val; // store value before activation
|
| | | //output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val)));
|
| | |
|
| | | // Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20
|
| | | // TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49
|
| | | // log1p(x) == log(x + 1)
|
| | | output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) );
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_leaky_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = leaky_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_selu_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = selu_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_gelu_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = gelu_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_logistic_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = logistic_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_tanh_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = tanh_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_hardtan_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = hardtan_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_relu_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = relu_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void activate_array_relu6_kernel(float *x, int n)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | x[index] = relu6_activate_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
| | | {
|
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
| | | }
|
| | |
|
| | | // https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30
|
| | | __global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta)
|
| | | {
|
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | if (i < n) {
|
| | | float swish = x[i];
|
| | | delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a);
|
| | | }
|
| | | }
|
| | |
|
| | | // https://github.com/digantamisra98/Mish
|
| | | __global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta)
|
| | | {
|
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
| | | if (i < n) {
|
| | | const float MISH_THRESHOLD = 20.0f;
|
| | |
|
| | | // implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80
|
| | | // implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31
|
| | | // log1p(x) == log(x + 1)
|
| | | const float inp = activation_input_gpu[i];
|
| | | const float sp = softplus_kernel(inp, MISH_THRESHOLD);
|
| | | const float grad_sp = 1 - expf(-sp);
|
| | | const float tsp = tanh(sp);
|
| | | const float grad_tsp = (1 - tsp*tsp) * grad_sp;
|
| | | const float grad = inp * grad_tsp + tsp;
|
| | | delta[i] *= grad;
|
| | |
|
| | | //float x = activation_input[i];
|
| | | //float d = 2 * expf(x) + expf(2 * x) + 2;
|
| | | //float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6);
|
| | | //float derivative = expf(x) * w / (d * d);
|
| | | //delta[i] *= derivative;
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_leaky_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= leaky_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_selu_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= selu_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_gelu_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= gelu_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_logistic_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= logistic_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_tanh_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= tanh_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= hardtan_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_relu_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= relu_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | __global__ void gradient_array_relu6_kernel(float *x, int n, float *delta)
|
| | | {
|
| | | int index = blockIdx.x*blockDim.x + threadIdx.x;
|
| | | if (index < n) {
|
| | | delta[index] *= relu6_gradient_kernel(x[index]);
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
| | | {
|
| | | const int num_blocks = get_number_of_blocks(n, BLOCK);
|
| | | if (a == LINEAR) return;
|
| | | else if(a == LEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
|
| | | else
|
| | | activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | | extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
|
| | | {
|
| | | const int num_blocks = get_number_of_blocks(n, BLOCK);
|
| | | activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | | extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
|
| | | {
|
| | | const int num_blocks = get_number_of_blocks(n, BLOCK);
|
| | | activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | | extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
|
| | | {
|
| | | const int num_blocks = get_number_of_blocks(n, BLOCK);
|
| | | if (a == LINEAR) return;
|
| | | else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | //else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) {
|
| | | printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n");
|
| | | exit(0);
|
| | | }
|
| | | else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
|
| | | else
|
| | | gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | |
|
| | | extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta)
|
| | | {
|
| | | const int num_blocks = get_number_of_blocks(n, BLOCK);
|
| | | gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | | extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta)
|
| | | {
|
| | | const int num_blocks = get_number_of_blocks(n, BLOCK);
|
| | | gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | |
|
| | | __global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu)
|
| | | {
|
| | | int i = blockIdx.x * blockDim.x + threadIdx.x;
|
| | |
|
| | | int wh_i = i % wh_step;
|
| | | int b = i / wh_step;
|
| | |
|
| | | const float eps = 0.0001;
|
| | | if (i < size) {
|
| | | float sum = eps;
|
| | | int k;
|
| | | for (k = 0; k < channels; ++k) {
|
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
| | | if (val > 0) sum += val;
|
| | | }
|
| | | for (k = 0; k < channels; ++k) {
|
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
| | | if (val > 0) val = val / sum;
|
| | | else val = 0;
|
| | | output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu)
|
| | | {
|
| | | // n = w*h*c*batch
|
| | | // size = w*h*batch
|
| | | int size = n / channels;
|
| | |
|
| | | const int num_blocks = get_number_of_blocks(size, BLOCK);
|
| | |
|
| | | activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | |
|
| | |
|
| | | __global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
|
| | | {
|
| | | int i = blockIdx.x * blockDim.x + threadIdx.x;
|
| | |
|
| | | int wh_i = i % wh_step;
|
| | | int b = i / wh_step;
|
| | |
|
| | | const float eps = 0.0001;
|
| | | if (i < size) {
|
| | | float sum = eps;
|
| | | float max_val = -FLT_MAX;
|
| | | int k;
|
| | | if (use_max_val) {
|
| | | for (k = 0; k < channels; ++k) {
|
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
| | | if (val > max_val || k == 0) max_val = val;
|
| | | }
|
| | | }
|
| | | else
|
| | | max_val = 0;
|
| | |
|
| | | for (k = 0; k < channels; ++k) {
|
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
| | | sum += expf(val - max_val);
|
| | | }
|
| | | for (k = 0; k < channels; ++k) {
|
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels];
|
| | | val = expf(val - max_val) / sum;
|
| | | if (isnan(val) || isinf(val)) val = 0;
|
| | | output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
|
| | | {
|
| | | // n = w*h*c*batch
|
| | | // size = w*h*batch
|
| | | int size = n / channels;
|
| | |
|
| | | const int num_blocks = get_number_of_blocks(size, BLOCK);
|
| | |
|
| | | activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | |
|
| | |
|
| | | __global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
|
| | | {
|
| | | int i = blockIdx.x * blockDim.x + threadIdx.x;
|
| | |
|
| | | int wh_i = i % wh_step;
|
| | | int b = i / wh_step;
|
| | |
|
| | | if (i < size) {
|
| | | int k;
|
| | | /*
|
| | | float grad = 0;
|
| | | for (k = 0; k < channels; ++k) {
|
| | | const int index = wh_i + k * wh_step + b*wh_step*channels;
|
| | | float out = x[index];
|
| | | float delta = delta_gpu[index];
|
| | | grad += out*fabs(delta);
|
| | | }
|
| | | */
|
| | | for (k = 0; k < channels; ++k) {
|
| | | const int index = wh_i + k * wh_step + b*wh_step*channels;
|
| | | float delta = delta_gpu[index];
|
| | | float grad = x[index] * (1 - x[index]);
|
| | | delta = delta * grad;
|
| | | if (isnan(delta) || isinf(delta)) delta = 0;
|
| | | delta_gpu[index] = delta;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
|
| | | {
|
| | | // n = w*h*c*batch
|
| | | // size = w*h*batch
|
| | | int size = n / channels;
|
| | |
|
| | | const int num_blocks = get_number_of_blocks(size, BLOCK);
|
| | |
|
| | | gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | }
|
| | |
|
| | |
|
| | | __global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
|
| | | {
|
| | | int i = blockIdx.x * blockDim.x + threadIdx.x;
|
| | |
|
| | | int wh_i = i % wh_step;
|
| | | int b = i / wh_step;
|
| | |
|
| | | if (i < size) {
|
| | | int k;
|
| | | /*
|
| | | float grad = 0;
|
| | | for (k = 0; k < channels; ++k) {
|
| | | const int index = wh_i + k * wh_step + b*wh_step*channels;
|
| | | float out = x[index];
|
| | | float delta = delta_gpu[index];
|
| | | grad += out*fabs(delta);
|
| | | }
|
| | | */
|
| | | for (k = 0; k < channels; ++k) {
|
| | | const int index = wh_i + k * wh_step + b*wh_step*channels;
|
| | | if (x[index] > 0) {
|
| | | float delta = delta_gpu[index];
|
| | | float grad = x[index];
|
| | | delta = delta * grad;
|
| | | delta_gpu[index] = delta;
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
|
| | | {
|
| | | // n = w*h*c*batch
|
| | | // size = w*h*batch
|
| | | int size = n / channels;
|
| | |
|
| | | const int num_blocks = get_number_of_blocks(size, BLOCK);
|
| | |
|
| | | gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
|
| | | CHECK_CUDA(cudaPeekAtLastError());
|
| | | #include "darknet.h" |
| | | #include <cuda_runtime.h> |
| | | #include <curand.h> |
| | | #include <cublas_v2.h> |
| | | #include <float.h> |
| | | |
| | | #include "activations.h" |
| | | #include "dark_cuda.h" |
| | | |
| | | __device__ float lhtan_activate_kernel(float x) |
| | | { |
| | | if(x < 0) return .001*x; |
| | | if(x > 1) return .001*(x-1) + 1; |
| | | return x; |
| | | } |
| | | __device__ float lhtan_gradient_kernel(float x) |
| | | { |
| | | if(x > 0 && x < 1) return 1; |
| | | return .001; |
| | | } |
| | | |
| | | __device__ float hardtan_activate_kernel(float x) |
| | | { |
| | | if (x < -1) return -1; |
| | | if (x > 1) return 1; |
| | | return x; |
| | | } |
| | | __device__ float linear_activate_kernel(float x){return x;} |
| | | __device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));} |
| | | __device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;} |
| | | __device__ float relu_activate_kernel(float x){return x*(x>0);} |
| | | __device__ float relu6_activate_kernel(float x) { return min_val_cmp(max_val_cmp(x, 0), 6); } |
| | | __device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} |
| | | __device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); } |
| | | __device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;} |
| | | __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;} |
| | | __device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;} |
| | | __device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);} |
| | | __device__ float gelu_activate_kernel(float x){return (0.5*x*(1 + tanhf(0.797885*x + 0.035677*powf(x, 3))));} |
| | | __device__ float softplus_kernel(float x, float threshold = 20) { |
| | | if (x > threshold) return x; // too large |
| | | else if (x < -threshold) return expf(x); // too small |
| | | return log1pf(expf(x)); |
| | | //return logf(expf(x) + 1); |
| | | } |
| | | __device__ float plse_activate_kernel(float x) |
| | | { |
| | | if(x < -4) return .01f * (x + 4); |
| | | if(x > 4) return .01f * (x - 4) + 1; |
| | | return .125f*x + .5f; |
| | | } |
| | | __device__ float stair_activate_kernel(float x) |
| | | { |
| | | int n = floorf(x); |
| | | if (n%2 == 0) return floorf(x/2.f); |
| | | else return (x - n) + floorf(x/2.f); |
| | | } |
| | | |
| | | |
| | | __device__ float hardtan_gradient_kernel(float x) |
| | | { |
| | | if (x > -1 && x < 1) return 1; |
| | | return 0; |
| | | } |
| | | __device__ float linear_gradient_kernel(float x){return 1;} |
| | | __device__ float logistic_gradient_kernel(float x){return (1-x)*x;} |
| | | __device__ float loggy_gradient_kernel(float x) |
| | | { |
| | | float y = (x+1.F)/2.F; |
| | | return 2*(1-y)*y; |
| | | } |
| | | __device__ float relu_gradient_kernel(float x){return (x>0);} |
| | | __device__ float relu6_gradient_kernel(float x) { return (x > 0 && x < 6); } |
| | | __device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);} |
| | | __device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); } |
| | | __device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;} |
| | | __device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;} |
| | | __device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;} |
| | | __device__ float tanh_gradient_kernel(float x){return 1-x*x;} |
| | | __device__ float sech_gpu(float x) { return 2 / (expf(x) + expf(-x)); } |
| | | __device__ float gelu_gradient_kernel(float x) { |
| | | const float x3 = powf(x, 3); |
| | | return 0.5*tanhf(0.0356774*x3 + 0.797885*x) + (0.0535161*x3 + 0.398942*x) * powf(sech_gpu(0.0356774*x3 + 0.797885*x), 2) + 0.5; |
| | | } |
| | | __device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;} |
| | | __device__ float stair_gradient_kernel(float x) |
| | | { |
| | | if (floorf(x) == x) return 0; |
| | | return 1; |
| | | } |
| | | |
| | | __device__ float activate_kernel(float x, ACTIVATION a) |
| | | { |
| | | switch(a){ |
| | | case LINEAR: |
| | | return linear_activate_kernel(x); |
| | | case LOGISTIC: |
| | | return logistic_activate_kernel(x); |
| | | case LOGGY: |
| | | return loggy_activate_kernel(x); |
| | | case RELU: |
| | | return relu_activate_kernel(x); |
| | | case RELU6: |
| | | return relu6_activate_kernel(x); |
| | | case ELU: |
| | | return elu_activate_kernel(x); |
| | | case SELU: |
| | | return selu_activate_kernel(x); |
| | | case GELU: |
| | | return gelu_activate_kernel(x); |
| | | case RELIE: |
| | | return relie_activate_kernel(x); |
| | | case RAMP: |
| | | return ramp_activate_kernel(x); |
| | | case LEAKY: |
| | | return leaky_activate_kernel(x); |
| | | case TANH: |
| | | return tanh_activate_kernel(x); |
| | | case PLSE: |
| | | return plse_activate_kernel(x); |
| | | case STAIR: |
| | | return stair_activate_kernel(x); |
| | | case HARDTAN: |
| | | return hardtan_activate_kernel(x); |
| | | case LHTAN: |
| | | return lhtan_activate_kernel(x); |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | __device__ float gradient_kernel(float x, ACTIVATION a) |
| | | { |
| | | switch (a) { |
| | | case LINEAR: |
| | | return linear_gradient_kernel(x); |
| | | case LOGISTIC: |
| | | return logistic_gradient_kernel(x); |
| | | case LOGGY: |
| | | return loggy_gradient_kernel(x); |
| | | case RELU: |
| | | return relu_gradient_kernel(x); |
| | | case RELU6: |
| | | return relu6_gradient_kernel(x); |
| | | case NORM_CHAN: |
| | | return relu_gradient_kernel(x); |
| | | case ELU: |
| | | return elu_gradient_kernel(x); |
| | | case SELU: |
| | | return selu_gradient_kernel(x); |
| | | case GELU: |
| | | return gelu_gradient_kernel(x); |
| | | case RELIE: |
| | | return relie_gradient_kernel(x); |
| | | case RAMP: |
| | | return ramp_gradient_kernel(x); |
| | | case LEAKY: |
| | | return leaky_gradient_kernel(x); |
| | | case TANH: |
| | | return tanh_gradient_kernel(x); |
| | | case PLSE: |
| | | return plse_gradient_kernel(x); |
| | | case STAIR: |
| | | return stair_gradient_kernel(x); |
| | | case HARDTAN: |
| | | return hardtan_gradient_kernel(x); |
| | | case LHTAN: |
| | | return lhtan_gradient_kernel(x); |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | __global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx) |
| | | { |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | int i = id % s; |
| | | int b = id / s; |
| | | float x1 = x[b*s + i]; |
| | | float x2 = x[b*s + s / 2 + i]; |
| | | if (id < n) { |
| | | float de = dy[id]; |
| | | dx[b*s + i] = x2*de; |
| | | dx[b*s + s / 2 + i] = x1*de; |
| | | } |
| | | } |
| | | |
| | | extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y) |
| | | { |
| | | binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | __global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y) |
| | | { |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | int i = id % s; |
| | | int b = id / s; |
| | | float x1 = x[b*s + i]; |
| | | float x2 = x[b*s + s / 2 + i]; |
| | | if (id < n) y[id] = x1*x2; |
| | | } |
| | | |
| | | extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y) |
| | | { |
| | | binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void activate_array_kernel(float *x, int n, ACTIVATION a) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(i < n) x[i] = activate_kernel(x[i], a); |
| | | } |
| | | |
| | | |
| | | |
| | | __global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i < n) { |
| | | float x_val = x[i]; |
| | | float sigmoid = logistic_activate_kernel(x_val); |
| | | if (output_sigmoid_gpu) output_sigmoid_gpu[i] = sigmoid; |
| | | output_gpu[i] = x_val * sigmoid; |
| | | } |
| | | } |
| | | |
| | | __device__ float mish_njuffa(float x) |
| | | { |
| | | float r; |
| | | float e = expf(x); |
| | | r = 1.0f / fmaf(fmaf(-0.5f, e, -1.0f), e, -1.0f); |
| | | r = fmaf(r, x, x); |
| | | return r; |
| | | } |
| | | |
| | | __device__ float mish_yashas(float x) |
| | | { |
| | | float e = __expf(x); |
| | | if (x <= -18.0f) |
| | | return x * e; |
| | | |
| | | float n = e * e + 2 * e; |
| | | if (x <= -5.0f) |
| | | return x * __fdividef(n, n + 2); |
| | | |
| | | return x - 2 * __fdividef(x, n + 2); |
| | | } |
| | | |
| | | __device__ float mish_yashas2(float x) |
| | | { |
| | | float e = __expf(x); |
| | | float n = e * e + 2 * e; |
| | | if (x <= -0.6f) |
| | | return x * __fdividef(n, n + 2); |
| | | |
| | | return x - 2 * __fdividef(x, n + 2); |
| | | } |
| | | |
| | | // https://github.com/digantamisra98/Mish |
| | | __global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i < n) { |
| | | const float MISH_THRESHOLD = 20; |
| | | float x_val = x[i]; |
| | | if (activation_input) activation_input[i] = x_val; // store value before activation |
| | | //output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val))); |
| | | |
| | | // Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20 |
| | | // TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49 |
| | | // log1p(x) == log(x + 1) |
| | | //output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) ); |
| | | output_gpu[i] = mish_yashas2(x_val); |
| | | //output_gpu[i] = mish_njuffa(x_val); |
| | | } |
| | | } |
| | | |
| | | __device__ float hard_mish_yashas(float x) |
| | | { |
| | | if (x > 0) |
| | | return x; |
| | | if (x > -2) |
| | | return x * x / 2 + x; |
| | | return 0; |
| | | } |
| | | |
| | | __global__ void activate_array_hard_mish_kernel(float *x, int n, float *activation_input, float *output_gpu) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i < n) { |
| | | |
| | | float x_val = x[i]; |
| | | if (activation_input) activation_input[i] = x_val; // store value before activation |
| | | output_gpu[i] = hard_mish_yashas(x_val); |
| | | } |
| | | } |
| | | __global__ void activate_array_leaky_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = leaky_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_selu_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = selu_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_gelu_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = gelu_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_logistic_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = logistic_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_tanh_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = tanh_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_hardtan_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = hardtan_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_relu_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = relu_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void activate_array_relu6_kernel(float *x, int n) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | x[index] = relu6_activate_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(i < n) delta[i] *= gradient_kernel(x[i], a); |
| | | } |
| | | |
| | | // https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30 |
| | | __global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i < n) { |
| | | float swish = x[i]; |
| | | delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a); |
| | | } |
| | | } |
| | | |
| | | // https://github.com/digantamisra98/Mish |
| | | __global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i < n) { |
| | | const float MISH_THRESHOLD = 20.0f; |
| | | |
| | | // implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80 |
| | | // implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31 |
| | | // log1p(x) == log(x + 1) |
| | | const float inp = activation_input_gpu[i]; |
| | | const float sp = softplus_kernel(inp, MISH_THRESHOLD); |
| | | const float grad_sp = -expm1f(-sp); |
| | | //const float grad_sp = 1 - expf(-sp); |
| | | const float tsp = tanh(sp); |
| | | const float grad_tsp = (1 - tsp*tsp) * grad_sp; |
| | | const float grad = inp * grad_tsp + tsp; |
| | | delta[i] *= grad; |
| | | |
| | | //float x = activation_input[i]; |
| | | //float d = 2 * expf(x) + expf(2 * x) + 2; |
| | | //float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6); |
| | | //float derivative = expf(x) * w / (d * d); |
| | | //delta[i] *= derivative; |
| | | } |
| | | } |
| | | |
| | | __device__ float hard_mish_yashas_grad(float x) |
| | | { |
| | | if (x > 0) |
| | | return 1; |
| | | if (x > -2) |
| | | return x + 1; |
| | | return 0; |
| | | } |
| | | |
| | | __global__ void gradient_array_hard_mish_kernel(int n, float *activation_input_gpu, float *delta) |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i < n) { |
| | | |
| | | const float x = activation_input_gpu[i]; |
| | | delta[i] *= hard_mish_yashas_grad(x); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_leaky_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= leaky_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_revleaky_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] /= leaky_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_selu_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= selu_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_gelu_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= gelu_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_logistic_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= logistic_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_tanh_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= tanh_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= hardtan_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_relu_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= relu_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | __global__ void gradient_array_relu6_kernel(float *x, int n, float *delta) |
| | | { |
| | | int index = blockIdx.x*blockDim.x + threadIdx.x; |
| | | if (index < n) { |
| | | delta[index] *= relu6_gradient_kernel(x[index]); |
| | | } |
| | | } |
| | | |
| | | extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | if (a == LINEAR) return; |
| | | else if (a == LEAKY || a == REVLEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == RELU6) activate_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else if (a == GELU) activate_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
| | | else |
| | | activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void activate_array_hard_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | activate_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | if (a == LINEAR) return; |
| | | else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == REVLEAKY) gradient_array_revleaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == RELU6) gradient_array_relu6_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | //else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) { |
| | | printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n"); |
| | | exit(0); |
| | | } |
| | | else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else if (a == GELU) gradient_array_gelu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
| | | else |
| | | gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | |
| | | extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void gradient_array_hard_mish_ongpu(int n, float *activation_input_gpu, float *delta) |
| | | { |
| | | const int num_blocks = get_number_of_blocks(n, BLOCK); |
| | | gradient_array_hard_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | |
| | | __global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu) |
| | | { |
| | | int i = blockIdx.x * blockDim.x + threadIdx.x; |
| | | |
| | | int wh_i = i % wh_step; |
| | | int b = i / wh_step; |
| | | |
| | | const float eps = 0.0001; |
| | | if (i < size) { |
| | | float sum = eps; |
| | | int k; |
| | | for (k = 0; k < channels; ++k) { |
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
| | | if (val > 0) sum += val; |
| | | } |
| | | for (k = 0; k < channels; ++k) { |
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
| | | if (val > 0) val = val / sum; |
| | | else val = 0; |
| | | output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu) |
| | | { |
| | | // n = w*h*c*batch |
| | | // size = w*h*batch |
| | | int size = n / channels; |
| | | |
| | | const int num_blocks = get_number_of_blocks(size, BLOCK); |
| | | |
| | | activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | |
| | | |
| | | __global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) |
| | | { |
| | | int i = blockIdx.x * blockDim.x + threadIdx.x; |
| | | |
| | | int wh_i = i % wh_step; |
| | | int b = i / wh_step; |
| | | |
| | | const float eps = 0.0001; |
| | | if (i < size) { |
| | | float sum = eps; |
| | | float max_val = -FLT_MAX; |
| | | int k; |
| | | if (use_max_val) { |
| | | for (k = 0; k < channels; ++k) { |
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
| | | if (val > max_val || k == 0) max_val = val; |
| | | } |
| | | } |
| | | else |
| | | max_val = 0; |
| | | |
| | | for (k = 0; k < channels; ++k) { |
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
| | | sum += expf(val - max_val); |
| | | } |
| | | for (k = 0; k < channels; ++k) { |
| | | float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
| | | val = expf(val - max_val) / sum; |
| | | if (isnan(val) || isinf(val)) val = 0; |
| | | output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) |
| | | { |
| | | // n = w*h*c*batch |
| | | // size = w*h*batch |
| | | int size = n / channels; |
| | | |
| | | const int num_blocks = get_number_of_blocks(size, BLOCK); |
| | | |
| | | activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | |
| | | |
| | | __global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) |
| | | { |
| | | int i = blockIdx.x * blockDim.x + threadIdx.x; |
| | | |
| | | int wh_i = i % wh_step; |
| | | int b = i / wh_step; |
| | | |
| | | if (i < size) { |
| | | int k; |
| | | /* |
| | | float grad = 0; |
| | | for (k = 0; k < channels; ++k) { |
| | | const int index = wh_i + k * wh_step + b*wh_step*channels; |
| | | float out = x[index]; |
| | | float delta = delta_gpu[index]; |
| | | grad += out*fabs(delta); |
| | | } |
| | | */ |
| | | for (k = 0; k < channels; ++k) { |
| | | const int index = wh_i + k * wh_step + b*wh_step*channels; |
| | | float delta = delta_gpu[index]; |
| | | float grad = x[index] * (1 - x[index]); |
| | | delta = delta * grad; |
| | | if (isnan(delta) || isinf(delta)) delta = 0; |
| | | delta_gpu[index] = delta; |
| | | } |
| | | } |
| | | } |
| | | |
| | | extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) |
| | | { |
| | | // n = w*h*c*batch |
| | | // size = w*h*batch |
| | | int size = n / channels; |
| | | |
| | | const int num_blocks = get_number_of_blocks(size, BLOCK); |
| | | |
| | | gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | |
| | | __global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) |
| | | { |
| | | int i = blockIdx.x * blockDim.x + threadIdx.x; |
| | | |
| | | int wh_i = i % wh_step; |
| | | int b = i / wh_step; |
| | | |
| | | if (i < size) { |
| | | int k; |
| | | /* |
| | | float grad = 0; |
| | | for (k = 0; k < channels; ++k) { |
| | | const int index = wh_i + k * wh_step + b*wh_step*channels; |
| | | float out = x[index]; |
| | | float delta = delta_gpu[index]; |
| | | grad += out*fabs(delta); |
| | | } |
| | | */ |
| | | for (k = 0; k < channels; ++k) { |
| | | const int index = wh_i + k * wh_step + b*wh_step*channels; |
| | | if (x[index] > 0) { |
| | | float delta = delta_gpu[index]; |
| | | float grad = x[index]; |
| | | delta = delta * grad; |
| | | delta_gpu[index] = delta; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) |
| | | { |
| | | // n = w*h*c*batch |
| | | // size = w*h*batch |
| | | int size = n / channels; |
| | | |
| | | const int num_blocks = get_number_of_blocks(size, BLOCK); |
| | | |
| | | gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); |
| | | CHECK_CUDA(cudaPeekAtLastError()); |
| | | } |