| | |
| | | #include "activation_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include "gemm.h"
|
| | |
|
| | | #include <math.h>
|
| | | #include <stdio.h>
|
| | | #include <stdlib.h>
|
| | | #include <string.h>
|
| | |
|
| | | layer make_activation_layer(int batch, int inputs, ACTIVATION activation)
|
| | | {
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.type = ACTIVE;
|
| | |
|
| | | l.inputs = inputs;
|
| | | l.outputs = inputs;
|
| | | l.batch=batch;
|
| | |
|
| | | l.output = (float*)xcalloc(batch * inputs, sizeof(float));
|
| | | l.delta = (float*)xcalloc(batch * inputs, sizeof(float));
|
| | |
|
| | | l.forward = forward_activation_layer;
|
| | | l.backward = backward_activation_layer;
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_activation_layer_gpu;
|
| | | l.backward_gpu = backward_activation_layer_gpu;
|
| | |
|
| | | l.output_gpu = cuda_make_array(l.output, inputs*batch);
|
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
|
| | | #endif
|
| | | l.activation = activation;
|
| | | fprintf(stderr, "Activation Layer: %d inputs\n", inputs);
|
| | | return l;
|
| | | }
|
| | |
|
| | | void forward_activation_layer(layer l, network_state state)
|
| | | {
|
| | | copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
|
| | | activate_array(l.output, l.outputs*l.batch, l.activation);
|
| | | }
|
| | |
|
| | | void backward_activation_layer(layer l, network_state state)
|
| | | {
|
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | void forward_activation_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
|
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
| | | }
|
| | |
|
| | | void backward_activation_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
|
| | | }
|
| | | #endif
|
| | | #include "activation_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | layer make_activation_layer(int batch, int inputs, ACTIVATION activation) |
| | | { |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.type = ACTIVE; |
| | | |
| | | l.inputs = inputs; |
| | | l.outputs = inputs; |
| | | l.batch=batch; |
| | | |
| | | l.output = (float*)xcalloc(batch * inputs, sizeof(float)); |
| | | l.delta = (float*)xcalloc(batch * inputs, sizeof(float)); |
| | | |
| | | l.forward = forward_activation_layer; |
| | | l.backward = backward_activation_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_activation_layer_gpu; |
| | | l.backward_gpu = backward_activation_layer_gpu; |
| | | |
| | | l.output_gpu = cuda_make_array(l.output, inputs*batch); |
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch); |
| | | #endif |
| | | l.activation = activation; |
| | | fprintf(stderr, "Activation Layer: %d inputs\n", inputs); |
| | | return l; |
| | | } |
| | | |
| | | void forward_activation_layer(layer l, network_state state) |
| | | { |
| | | copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); |
| | | activate_array(l.output, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_activation_layer(layer l, network_state state) |
| | | { |
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_activation_layer_gpu(layer l, network_state state) |
| | | { |
| | | copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_activation_layer_gpu(layer l, network_state state) |
| | | { |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | #endif |