| | |
| | | #ifndef BLAS_H
|
| | | #define BLAS_H
|
| | | #include <stdlib.h>
|
| | | #include "darknet.h"
|
| | |
|
| | | #ifdef GPU
|
| | | #include "dark_cuda.h"
|
| | | #include "tree.h"
|
| | | #endif
|
| | |
|
| | | #ifdef __cplusplus
|
| | | extern "C" {
|
| | | #endif
|
| | | void flatten(float *x, int size, int layers, int batch, int forward);
|
| | | void pm(int M, int N, float *A);
|
| | | float *random_matrix(int rows, int cols);
|
| | | void time_random_matrix(int TA, int TB, int m, int k, int n);
|
| | | void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out);
|
| | |
|
| | | void test_blas();
|
| | |
|
| | | void const_cpu(int N, float ALPHA, float *X, int INCX);
|
| | | void constrain_ongpu(int N, float ALPHA, float * X, int INCX);
|
| | | void constrain_min_max_ongpu(int N, float MIN, float MAX, float * X, int INCX);
|
| | | void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
| | | void mul_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
| | |
|
| | | void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
| | | void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
| | | void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
| | | void scal_add_cpu(int N, float ALPHA, float BETA, float *X, int INCX);
|
| | | void fill_cpu(int N, float ALPHA, float * X, int INCX);
|
| | | float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
| | | void test_gpu_blas();
|
| | | void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
| | | void shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization);
|
| | | void backward_shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers,
|
| | | float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization);
|
| | |
|
| | | void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
|
| | | void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
| | | void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
| | |
|
| | | void add_bias(float *output, float *biases, int batch, int n, int size);
|
| | | void scale_bias(float *output, float *scales, int batch, int n, int size);
|
| | | void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
|
| | | void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
|
| | | void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
|
| | | void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
|
| | |
|
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error);
|
| | | void l2_cpu(int n, float *pred, float *truth, float *delta, float *error);
|
| | | void weighted_sum_cpu(float *a, float *b, float *s, int num, float *c);
|
| | |
|
| | | void softmax(float *input, int n, float temp, float *output, int stride);
|
| | | void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out);
|
| | | void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output);
|
| | | void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error);
|
| | | void constrain_cpu(int size, float ALPHA, float *X);
|
| | | void fix_nan_and_inf_cpu(float *input, size_t size);
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | void constrain_weight_updates_ongpu(int N, float coef, float *weights_gpu, float *weight_updates_gpu);
|
| | | void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
| | | void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
| | | void simple_copy_ongpu(int size, float *src, float *dst);
|
| | | void memcpy_ongpu(void *dst, void *src, int size_bytes);
|
| | | void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY);
|
| | | void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
| | | void scal_ongpu(int N, float ALPHA, float * X, int INCX);
|
| | | void scal_add_ongpu(int N, float ALPHA, float BETA, float * X, int INCX);
|
| | | void supp_ongpu(int N, float ALPHA, float * X, int INCX);
|
| | | void mask_gpu_new_api(int N, float * X, float mask_num, float * mask, float val);
|
| | | void mask_ongpu(int N, float * X, float mask_num, float * mask);
|
| | | void const_ongpu(int N, float ALPHA, float *X, int INCX);
|
| | | void pow_ongpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
| | | void mul_ongpu(int N, float *X, int INCX, float *Y, int INCY);
|
| | | void fill_ongpu(int N, float ALPHA, float * X, int INCX);
|
| | | void gradient_centralization_gpu(int w, int h, int c, int f, float *in);
|
| | |
|
| | | void mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
|
| | | void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
| | | void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
| | |
|
| | | void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
|
| | |
|
| | | void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
|
| | | void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
|
| | |
|
| | | void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
|
| | | void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
| | | void fast_v_cbn_gpu(const float *x, float *mean, int batch, int filters, int spatial, int minibatch_index, int max_minibatch_index, float *m_avg, float *v_avg, float *variance,
|
| | | const float alpha, float *rolling_mean_gpu, float *rolling_variance_gpu, int inverse_variance, float epsilon);
|
| | | void inverse_variance_ongpu(int size, float *src, float *dst, float epsilon);
|
| | | void normalize_scale_bias_gpu(float *x, float *mean, float *variance, float *scales, float *biases, int batch, int filters, int spatial, int inverse_variance, float epsilon);
|
| | | void compare_2_arrays_gpu(float *one, float *two, int size);
|
| | | void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
| | | void shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization);
|
| | | void backward_shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_delta_gpu, float *delta_out, float *delta_in,
|
| | | float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization);
|
| | | void input_shortcut_gpu(float *in, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
| | | void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
|
| | | void mean_array_gpu(float *src, int size, float alpha, float *avg);
|
| | | void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
| | | void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
| | | void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
|
| | |
|
| | | void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error);
|
| | | void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error);
|
| | | void l2_gpu(int n, float *pred, float *truth, float *delta, float *error);
|
| | | void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc);
|
| | | void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c);
|
| | | void mult_add_into_gpu(int num, float *a, float *b, float *c);
|
| | |
|
| | | void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out);
|
| | |
|
| | | void softmax_gpu_new_api(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output);
|
| | | void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output);
|
| | | void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t);
|
| | | void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t);
|
| | |
|
| | | void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out);
|
| | |
|
| | | void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out);
|
| | |
|
| | | void softmax_tree_gpu(float *input, int spatial, int batch, int stride, float temp, float *output, tree hier);
|
| | |
|
| | | void fix_nan_and_inf(float *input, size_t size);
|
| | | void reset_nan_and_inf(float *input, size_t size);
|
| | | int is_nan_or_inf(float *input, size_t size);
|
| | |
|
| | | void add_3_arrays_activate(float *a1, float *a2, float *a3, size_t size, ACTIVATION a, float *dst);
|
| | | void sum_of_mults(float *a1, float *a2, float *b1, float *b2, size_t size, float *dst);
|
| | | void activate_and_mult(float *a1, float *a2, size_t size, ACTIVATION a, float *dst);
|
| | |
|
| | | void scale_channels_gpu(float *in_w_h_c, int size, int channel_size, int batch_size, int scale_wh, float *scales_c, float *out);
|
| | | void backward_scale_channels_gpu(float *in_w_h_c_delta, int size, int channel_size, int batch_size, int scale_wh,
|
| | | float *in_scales_c, float *out_from_delta,
|
| | | float *in_from_output, float *out_state_delta);
|
| | |
|
| | |
|
| | | void backward_sam_gpu(float *in_w_h_c_delta, int size, int channel_size,
|
| | | float *in_scales_c, float *out_from_delta,
|
| | | float *in_from_output, float *out_state_delta);
|
| | |
|
| | | void sam_gpu(float *in_w_h_c, int size, int channel_size, float *scales_c, float *out);
|
| | |
|
| | | void smooth_rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse);
|
| | | void stretch_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, float scale, int reverse);
|
| | | void sway_and_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse);
|
| | | void stretch_sway_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse);
|
| | | void rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int reverse);
|
| | | void reduce_and_expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups);
|
| | | void expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups);
|
| | |
|
| | | #endif
|
| | | #ifdef __cplusplus
|
| | | }
|
| | | #endif
|
| | | #endif
|
| | | #ifndef BLAS_H |
| | | #define BLAS_H |
| | | #include <stdlib.h> |
| | | #include "darknet.h" |
| | | |
| | | #ifdef GPU |
| | | #include "dark_cuda.h" |
| | | #include "tree.h" |
| | | #endif |
| | | |
| | | #ifdef __cplusplus |
| | | extern "C" { |
| | | #endif |
| | | void flatten(float *x, int size, int layers, int batch, int forward); |
| | | void pm(int M, int N, float *A); |
| | | float *random_matrix(int rows, int cols); |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n); |
| | | void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out); |
| | | |
| | | void test_blas(); |
| | | |
| | | void const_cpu(int N, float ALPHA, float *X, int INCX); |
| | | void constrain_ongpu(int N, float ALPHA, float * X, int INCX); |
| | | void constrain_min_max_ongpu(int N, float MIN, float MAX, float * X, int INCX); |
| | | void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY); |
| | | void mul_cpu(int N, float *X, int INCX, float *Y, int INCY); |
| | | |
| | | void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY); |
| | | void copy_cpu(int N, float *X, int INCX, float *Y, int INCY); |
| | | void scal_cpu(int N, float ALPHA, float *X, int INCX); |
| | | void scal_add_cpu(int N, float ALPHA, float BETA, float *X, int INCX); |
| | | void fill_cpu(int N, float ALPHA, float * X, int INCX); |
| | | float dot_cpu(int N, float *X, int INCX, float *Y, int INCY); |
| | | void test_gpu_blas(); |
| | | void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out); |
| | | void shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization); |
| | | void backward_shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, |
| | | float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization); |
| | | |
| | | void mean_cpu(float *x, int batch, int filters, int spatial, float *mean); |
| | | void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance); |
| | | void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial); |
| | | |
| | | void add_bias(float *output, float *biases, int batch, int n, int size); |
| | | void scale_bias(float *output, float *scales, int batch, int n, int size); |
| | | void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates); |
| | | void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta); |
| | | void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta); |
| | | void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta); |
| | | |
| | | void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void l2_cpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void weighted_sum_cpu(float *a, float *b, float *s, int num, float *c); |
| | | |
| | | void softmax(float *input, int n, float temp, float *output, int stride); |
| | | void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out); |
| | | void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output); |
| | | void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void constrain_cpu(int size, float ALPHA, float *X); |
| | | void fix_nan_and_inf_cpu(float *input, size_t size); |
| | | |
| | | |
| | | int check_sim(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size); |
| | | float find_sim(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size); |
| | | float find_P_constrastive(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size); |
| | | float P_constrastive_f_det(size_t il, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size); |
| | | float P_constrastive_f(size_t i, size_t l, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size); |
| | | void grad_contrastive_loss_positive_f(size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size); |
| | | void grad_contrastive_loss_negative_f(size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size, int neg_max); |
| | | |
| | | void get_embedding(float *src, int src_w, int src_h, int src_c, int embedding_size, int cur_w, int cur_h, int cur_n, int cur_b, float *dst); |
| | | float math_vector_length(float *A, unsigned int feature_size); |
| | | float cosine_similarity(float *A, float *B, unsigned int feature_size); |
| | | float P_constrastive(size_t i, size_t l, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *exp_cos_sim); |
| | | void grad_contrastive_loss_positive(size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh); |
| | | void grad_contrastive_loss_negative(size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh); |
| | | |
| | | |
| | | #ifdef GPU |
| | | |
| | | void constrain_weight_updates_ongpu(int N, float coef, float *weights_gpu, float *weight_updates_gpu); |
| | | void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY); |
| | | void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY); |
| | | void simple_copy_ongpu(int size, float *src, float *dst); |
| | | void memcpy_ongpu(void *dst, void *src, int size_bytes); |
| | | void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY); |
| | | void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY); |
| | | void scal_ongpu(int N, float ALPHA, float * X, int INCX); |
| | | void scal_add_ongpu(int N, float ALPHA, float BETA, float * X, int INCX); |
| | | void supp_ongpu(int N, float ALPHA, float * X, int INCX); |
| | | void mask_gpu_new_api(int N, float * X, float mask_num, float * mask, float val); |
| | | void mask_ongpu(int N, float * X, float mask_num, float * mask); |
| | | void const_ongpu(int N, float ALPHA, float *X, int INCX); |
| | | void pow_ongpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY); |
| | | void mul_ongpu(int N, float *X, int INCX, float *Y, int INCY); |
| | | void fill_ongpu(int N, float ALPHA, float * X, int INCX); |
| | | void gradient_centralization_gpu(int w, int h, int c, int f, float *in); |
| | | |
| | | void mean_gpu(float *x, int batch, int filters, int spatial, float *mean); |
| | | void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance); |
| | | void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial); |
| | | |
| | | void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta); |
| | | |
| | | void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta); |
| | | void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta); |
| | | |
| | | void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean); |
| | | void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance); |
| | | void fast_v_cbn_gpu(const float *x, float *mean, int batch, int filters, int spatial, int minibatch_index, int max_minibatch_index, float *m_avg, float *v_avg, float *variance, |
| | | const float alpha, float *rolling_mean_gpu, float *rolling_variance_gpu, int inverse_variance, float epsilon); |
| | | void inverse_variance_ongpu(int size, float *src, float *dst, float epsilon); |
| | | void normalize_scale_bias_gpu(float *x, float *mean, float *variance, float *scales, float *biases, int batch, int filters, int spatial, int inverse_variance, float epsilon); |
| | | void compare_2_arrays_gpu(float *one, float *two, int size); |
| | | void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out); |
| | | void shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization); |
| | | void backward_shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_delta_gpu, float *delta_out, float *delta_in, |
| | | float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization); |
| | | void input_shortcut_gpu(float *in, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out); |
| | | void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates); |
| | | void mean_array_gpu(float *src, int size, float alpha, float *avg); |
| | | void scale_bias_gpu(float *output, float *biases, int batch, int n, int size); |
| | | void add_bias_gpu(float *output, float *biases, int batch, int n, int size); |
| | | void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); |
| | | |
| | | void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void l2_gpu(int n, float *pred, float *truth, float *delta, float *error); |
| | | void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc); |
| | | void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c); |
| | | void mult_add_into_gpu(int num, float *a, float *b, float *c); |
| | | |
| | | void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out); |
| | | |
| | | void softmax_gpu_new_api(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output); |
| | | void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output); |
| | | void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t); |
| | | void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t); |
| | | |
| | | void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out); |
| | | |
| | | void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out); |
| | | |
| | | void softmax_tree_gpu(float *input, int spatial, int batch, int stride, float temp, float *output, tree hier); |
| | | |
| | | void fix_nan_and_inf(float *input, size_t size); |
| | | void reset_nan_and_inf(float *input, size_t size); |
| | | int is_nan_or_inf(float *input, size_t size); |
| | | |
| | | void add_3_arrays_activate(float *a1, float *a2, float *a3, size_t size, ACTIVATION a, float *dst); |
| | | void sum_of_mults(float *a1, float *a2, float *b1, float *b2, size_t size, float *dst); |
| | | void activate_and_mult(float *a1, float *a2, size_t size, ACTIVATION a, float *dst); |
| | | |
| | | void scale_channels_gpu(float *in_w_h_c, int size, int channel_size, int batch_size, int scale_wh, float *scales_c, float *out); |
| | | void backward_scale_channels_gpu(float *in_w_h_c_delta, int size, int channel_size, int batch_size, int scale_wh, |
| | | float *in_scales_c, float *out_from_delta, |
| | | float *in_from_output, float *out_state_delta); |
| | | |
| | | |
| | | void backward_sam_gpu(float *in_w_h_c_delta, int size, int channel_size, |
| | | float *in_scales_c, float *out_from_delta, |
| | | float *in_from_output, float *out_state_delta); |
| | | |
| | | void sam_gpu(float *in_w_h_c, int size, int channel_size, float *scales_c, float *out); |
| | | |
| | | void smooth_rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse); |
| | | void stretch_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, float scale, int reverse); |
| | | void sway_and_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse); |
| | | void stretch_sway_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse); |
| | | void rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int reverse); |
| | | void reduce_and_expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups); |
| | | void expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups); |
| | | void mult_inverse_array_gpu(const float *src_gpu, float *dst_gpu, int size, float eps, float divider, float clip, float abs_add); |
| | | void P_constrastive_f_det_gpu(int *labels, unsigned int feature_size, float temperature, contrastive_params *contrast_p, const int contrast_p_size); |
| | | void coord_conv_gpu(float *dst, int size, int w, int h, int chan, int b, int type); |
| | | |
| | | void forward_implicit_gpu(int batch, int nweights, float *weight_gpu, float *output_gpu); |
| | | void backward_implicit_gpu(int batch, int nweights, float *weight_updates_gpu, float *delta_gpu); |
| | | |
| | | #endif // GPU |
| | | #ifdef __cplusplus |
| | | } |
| | | #endif |
| | | #endif |