| | |
| | | // Page 4: https://arxiv.org/abs/1506.04214v2
|
| | | // Page 3: https://arxiv.org/pdf/1705.06368v3.pdf
|
| | | // https://wikimedia.org/api/rest_v1/media/math/render/svg/1edbece2559479959fe829e9c6657efb380debe7
|
| | |
|
| | | #include "conv_lstm_layer.h"
|
| | | #include "connected_layer.h"
|
| | | #include "convolutional_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include "gemm.h"
|
| | |
|
| | | #include <math.h>
|
| | | #include <stdio.h>
|
| | | #include <stdlib.h>
|
| | | #include <string.h>
|
| | |
|
| | | static void increment_layer(layer *l, int steps)
|
| | | {
|
| | | int num = l->outputs*l->batch*steps;
|
| | | l->output += num;
|
| | | l->delta += num;
|
| | | l->x += num;
|
| | | l->x_norm += num;
|
| | |
|
| | | #ifdef GPU
|
| | | l->output_gpu += num;
|
| | | l->delta_gpu += num;
|
| | | l->x_gpu += num;
|
| | | l->x_norm_gpu += num;
|
| | | #endif
|
| | | }
|
| | |
|
| | |
|
| | | layer make_conv_lstm_layer(int batch, int h, int w, int c, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int peephole, int xnor, int train)
|
| | | {
|
| | | fprintf(stderr, "CONV_LSTM Layer: %d x %d x %d image, %d filters\n", h, w, c, output_filters);
|
| | | /*
|
| | | batch = batch / steps;
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.batch = batch;
|
| | | l.type = LSTM;
|
| | | l.steps = steps;
|
| | | l.inputs = inputs;
|
| | | l.out_w = 1;
|
| | | l.out_h = 1;
|
| | | l.out_c = outputs;
|
| | | */
|
| | | batch = batch / steps;
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.train = train;
|
| | | l.batch = batch;
|
| | | l.type = CONV_LSTM;
|
| | | l.steps = steps;
|
| | | l.size = size;
|
| | | l.stride = stride;
|
| | | l.dilation = dilation;
|
| | | l.pad = pad;
|
| | | l.h = h;
|
| | | l.w = w;
|
| | | l.c = c;
|
| | | l.groups = groups;
|
| | | l.out_c = output_filters;
|
| | | l.inputs = h * w * c;
|
| | | l.xnor = xnor;
|
| | | l.peephole = peephole;
|
| | |
|
| | | // U
|
| | | l.uf = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.uf) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.uf->batch = batch;
|
| | | if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size;
|
| | |
|
| | | l.ui = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.ui) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.ui->batch = batch;
|
| | | if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size;
|
| | |
|
| | | l.ug = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.ug) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.ug->batch = batch;
|
| | | if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size;
|
| | |
|
| | | l.uo = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.uo) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.uo->batch = batch;
|
| | | if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size;
|
| | |
|
| | |
|
| | | // W
|
| | | l.wf = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.wf) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.wf->batch = batch;
|
| | | if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size;
|
| | |
|
| | | l.wi = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.wi) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.wi->batch = batch;
|
| | | if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size;
|
| | |
|
| | | l.wg = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.wg) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.wg->batch = batch;
|
| | | if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size;
|
| | |
|
| | | l.wo = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.wo) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.wo->batch = batch;
|
| | | if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size;
|
| | |
|
| | |
|
| | | // V
|
| | | l.vf = (layer*)xcalloc(1, sizeof(layer));
|
| | | if (l.peephole) {
|
| | | *(l.vf) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.vf->batch = batch;
|
| | | if (l.workspace_size < l.vf->workspace_size) l.workspace_size = l.vf->workspace_size;
|
| | | }
|
| | |
|
| | | l.vi = (layer*)xcalloc(1, sizeof(layer));
|
| | | if (l.peephole) {
|
| | | *(l.vi) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.vi->batch = batch;
|
| | | if (l.workspace_size < l.vi->workspace_size) l.workspace_size = l.vi->workspace_size;
|
| | | }
|
| | |
|
| | | l.vo = (layer*)xcalloc(1, sizeof(layer));
|
| | | if (l.peephole) {
|
| | | *(l.vo) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.vo->batch = batch;
|
| | | if (l.workspace_size < l.vo->workspace_size) l.workspace_size = l.vo->workspace_size;
|
| | | }
|
| | |
|
| | |
|
| | | l.batch_normalize = batch_normalize;
|
| | |
|
| | | l.out_h = l.wo->out_h;
|
| | | l.out_w = l.wo->out_w;
|
| | | l.outputs = l.wo->outputs;
|
| | | int outputs = l.outputs;
|
| | | l.inputs = w*h*c;
|
| | |
|
| | | assert(l.wo->outputs == l.uo->outputs);
|
| | |
|
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
|
| | | //l.state = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | |
|
| | | l.forward = forward_conv_lstm_layer;
|
| | | l.update = update_conv_lstm_layer;
|
| | | l.backward = backward_conv_lstm_layer;
|
| | |
|
| | | l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float));
|
| | |
|
| | | l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.stored_c_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.stored_h_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_conv_lstm_layer_gpu;
|
| | | l.backward_gpu = backward_conv_lstm_layer_gpu;
|
| | | l.update_gpu = update_conv_lstm_layer_gpu;
|
| | |
|
| | | //l.state_gpu = cuda_make_array(l.state, batch*l.outputs);
|
| | |
|
| | | l.output_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | | l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps);
|
| | |
|
| | | l.prev_state_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.prev_cell_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.cell_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | |
|
| | | l.f_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.i_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.g_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.o_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.c_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.h_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.stored_c_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.stored_h_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.temp_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.temp2_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.temp3_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.dc_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.dh_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.last_prev_state_gpu = cuda_make_array(0, l.batch*l.outputs);
|
| | | l.last_prev_cell_gpu = cuda_make_array(0, l.batch*l.outputs);
|
| | |
|
| | | #endif
|
| | |
|
| | | l.bflops = l.uf->bflops + l.ui->bflops + l.ug->bflops + l.uo->bflops +
|
| | | l.wf->bflops + l.wi->bflops + l.wg->bflops + l.wo->bflops +
|
| | | l.vf->bflops + l.vi->bflops + l.vo->bflops;
|
| | |
|
| | | if(l.peephole) l.bflops += 12 * l.outputs*l.batch / 1000000000.;
|
| | | else l.bflops += 9 * l.outputs*l.batch / 1000000000.;
|
| | |
|
| | | return l;
|
| | | }
|
| | |
|
| | | void update_conv_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
| | | {
|
| | | if (l.peephole) {
|
| | | update_convolutional_layer(*(l.vf), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.vi), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.vo), batch, learning_rate, momentum, decay);
|
| | | }
|
| | | update_convolutional_layer(*(l.wf), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.wi), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.wg), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.wo), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.uf), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.ui), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.ug), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.uo), batch, learning_rate, momentum, decay);
|
| | | }
|
| | |
|
| | | void resize_conv_lstm_layer(layer *l, int w, int h)
|
| | | {
|
| | | if (l->peephole) {
|
| | | resize_convolutional_layer(l->vf, w, h);
|
| | | if (l->workspace_size < l->vf->workspace_size) l->workspace_size = l->vf->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->vi, w, h);
|
| | | if (l->workspace_size < l->vi->workspace_size) l->workspace_size = l->vi->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->vo, w, h);
|
| | | if (l->workspace_size < l->vo->workspace_size) l->workspace_size = l->vo->workspace_size;
|
| | | }
|
| | |
|
| | | resize_convolutional_layer(l->wf, w, h);
|
| | | if (l->workspace_size < l->wf->workspace_size) l->workspace_size = l->wf->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->wi, w, h);
|
| | | if (l->workspace_size < l->wi->workspace_size) l->workspace_size = l->wi->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->wg, w, h);
|
| | | if (l->workspace_size < l->wg->workspace_size) l->workspace_size = l->wg->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->wo, w, h);
|
| | | if (l->workspace_size < l->wo->workspace_size) l->workspace_size = l->wo->workspace_size;
|
| | |
|
| | |
|
| | | resize_convolutional_layer(l->uf, w, h);
|
| | | if (l->workspace_size < l->uf->workspace_size) l->workspace_size = l->uf->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->ui, w, h);
|
| | | if (l->workspace_size < l->ui->workspace_size) l->workspace_size = l->ui->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->ug, w, h);
|
| | | if (l->workspace_size < l->ug->workspace_size) l->workspace_size = l->ug->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->uo, w, h);
|
| | | if (l->workspace_size < l->uo->workspace_size) l->workspace_size = l->uo->workspace_size;
|
| | |
|
| | | l->w = w;
|
| | | l->h = h;
|
| | | l->out_h = l->wo->out_h;
|
| | | l->out_w = l->wo->out_w;
|
| | | l->outputs = l->wo->outputs;
|
| | | int outputs = l->outputs;
|
| | | l->inputs = w*h*l->c;
|
| | | int steps = l->steps;
|
| | | int batch = l->batch;
|
| | |
|
| | | assert(l->wo->outputs == l->uo->outputs);
|
| | |
|
| | | l->output = (float*)xrealloc(l->output, outputs * batch * steps * sizeof(float));
|
| | | //l->state = (float*)xrealloc(l->state, outputs * batch * sizeof(float));
|
| | |
|
| | | l->prev_state_cpu = (float*)xrealloc(l->prev_state_cpu, batch*outputs * sizeof(float));
|
| | | l->prev_cell_cpu = (float*)xrealloc(l->prev_cell_cpu, batch*outputs * sizeof(float));
|
| | | l->cell_cpu = (float*)xrealloc(l->cell_cpu, batch*outputs*steps * sizeof(float));
|
| | |
|
| | | l->f_cpu = (float*)xrealloc(l->f_cpu, batch*outputs * sizeof(float));
|
| | | l->i_cpu = (float*)xrealloc(l->i_cpu, batch*outputs * sizeof(float));
|
| | | l->g_cpu = (float*)xrealloc(l->g_cpu, batch*outputs * sizeof(float));
|
| | | l->o_cpu = (float*)xrealloc(l->o_cpu, batch*outputs * sizeof(float));
|
| | | l->c_cpu = (float*)xrealloc(l->c_cpu, batch*outputs * sizeof(float));
|
| | | l->h_cpu = (float*)xrealloc(l->h_cpu, batch*outputs * sizeof(float));
|
| | | l->temp_cpu = (float*)xrealloc(l->temp_cpu, batch*outputs * sizeof(float));
|
| | | l->temp2_cpu = (float*)xrealloc(l->temp2_cpu, batch*outputs * sizeof(float));
|
| | | l->temp3_cpu = (float*)xrealloc(l->temp3_cpu, batch*outputs * sizeof(float));
|
| | | l->dc_cpu = (float*)xrealloc(l->dc_cpu, batch*outputs * sizeof(float));
|
| | | l->dh_cpu = (float*)xrealloc(l->dh_cpu, batch*outputs * sizeof(float));
|
| | | l->stored_c_cpu = (float*)xrealloc(l->stored_c_cpu, batch*outputs * sizeof(float));
|
| | | l->stored_h_cpu = (float*)xrealloc(l->stored_h_cpu, batch*outputs * sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | //if (l->state_gpu) cudaFree(l->state_gpu);
|
| | | //l->state_gpu = cuda_make_array(l->state, batch*l->outputs);
|
| | |
|
| | | if (l->output_gpu) cudaFree(l->output_gpu);
|
| | | l->output_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | |
|
| | | if (l->delta_gpu) cudaFree(l->delta_gpu);
|
| | | l->delta_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | |
|
| | | if (l->prev_state_gpu) cudaFree(l->prev_state_gpu);
|
| | | l->prev_state_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->prev_cell_gpu) cudaFree(l->prev_cell_gpu);
|
| | | l->prev_cell_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->cell_gpu) cudaFree(l->cell_gpu);
|
| | | l->cell_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | |
|
| | | if (l->f_gpu) cudaFree(l->f_gpu);
|
| | | l->f_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->i_gpu) cudaFree(l->i_gpu);
|
| | | l->i_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->g_gpu) cudaFree(l->g_gpu);
|
| | | l->g_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->o_gpu) cudaFree(l->o_gpu);
|
| | | l->o_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->c_gpu) cudaFree(l->c_gpu);
|
| | | l->c_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->h_gpu) cudaFree(l->h_gpu);
|
| | | l->h_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->temp_gpu) cudaFree(l->temp_gpu);
|
| | | l->temp_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->temp2_gpu) cudaFree(l->temp2_gpu);
|
| | | l->temp2_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->temp3_gpu) cudaFree(l->temp3_gpu);
|
| | | l->temp3_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->dc_gpu) cudaFree(l->dc_gpu);
|
| | | l->dc_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->dh_gpu) cudaFree(l->dh_gpu);
|
| | | l->dh_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->stored_c_gpu) cudaFree(l->stored_c_gpu);
|
| | | l->stored_c_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->stored_h_gpu) cudaFree(l->stored_h_gpu);
|
| | | l->stored_h_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->last_prev_state_gpu) cudaFree(l->last_prev_state_gpu);
|
| | | l->last_prev_state_gpu = cuda_make_array(0, batch*outputs);
|
| | |
|
| | | if (l->last_prev_cell_gpu) cudaFree(l->last_prev_cell_gpu);
|
| | | l->last_prev_cell_gpu = cuda_make_array(0, batch*outputs);
|
| | | #endif
|
| | | }
|
| | |
|
| | | void free_state_conv_lstm(layer l)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.h_cpu[i] = 0;
|
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.c_cpu[i] = 0;
|
| | |
|
| | | #ifdef GPU
|
| | | cuda_push_array(l.h_gpu, l.h_cpu, l.outputs * l.batch);
|
| | | cuda_push_array(l.c_gpu, l.c_cpu, l.outputs * l.batch);
|
| | |
|
| | | //fill_ongpu(l.outputs * l.batch, 0, l.dc_gpu, 1); // dont use
|
| | | //fill_ongpu(l.outputs * l.batch, 0, l.dh_gpu, 1); // dont use
|
| | | #endif // GPU
|
| | | }
|
| | |
|
| | | void randomize_state_conv_lstm(layer l)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.h_cpu[i] = rand_uniform(-1, 1);
|
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.c_cpu[i] = rand_uniform(-1, 1);
|
| | |
|
| | | #ifdef GPU
|
| | | cuda_push_array(l.h_gpu, l.h_cpu, l.outputs * l.batch);
|
| | | cuda_push_array(l.c_gpu, l.c_cpu, l.outputs * l.batch);
|
| | | #endif // GPU
|
| | | }
|
| | |
|
| | |
|
| | | void remember_state_conv_lstm(layer l)
|
| | | {
|
| | | memcpy(l.stored_c_cpu, l.c_cpu, l.outputs * l.batch * sizeof(float));
|
| | | memcpy(l.stored_h_cpu, l.h_cpu, l.outputs * l.batch * sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.stored_c_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.stored_h_gpu, 1);
|
| | | #endif // GPU
|
| | | }
|
| | |
|
| | | void restore_state_conv_lstm(layer l)
|
| | | {
|
| | | memcpy(l.c_cpu, l.stored_c_cpu, l.outputs * l.batch * sizeof(float));
|
| | | memcpy(l.h_cpu, l.stored_h_cpu, l.outputs * l.batch * sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | copy_ongpu(l.outputs*l.batch, l.stored_c_gpu, 1, l.c_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.stored_h_gpu, 1, l.h_gpu, 1);
|
| | | #endif // GPU
|
| | | }
|
| | |
|
| | | void forward_conv_lstm_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | int i;
|
| | | layer vf = *(l.vf);
|
| | | layer vi = *(l.vi);
|
| | | layer vo = *(l.vo);
|
| | |
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | if (state.train) {
|
| | | if (l.peephole) {
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, vf.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, vi.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, vo.delta, 1);
|
| | | }
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1);
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1);
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i)
|
| | | {
|
| | | if (l.peephole) {
|
| | | assert(l.outputs == vf.out_w * vf.out_h * vf.out_c);
|
| | | s.input = l.c_cpu;
|
| | | forward_convolutional_layer(vf, s);
|
| | | forward_convolutional_layer(vi, s);
|
| | | // vo below
|
| | | }
|
| | |
|
| | | assert(l.outputs == wf.out_w * wf.out_h * wf.out_c);
|
| | | assert(wf.c == l.out_c && wi.c == l.out_c && wg.c == l.out_c && wo.c == l.out_c);
|
| | |
|
| | | s.input = l.h_cpu;
|
| | | forward_convolutional_layer(wf, s);
|
| | | forward_convolutional_layer(wi, s);
|
| | | forward_convolutional_layer(wg, s);
|
| | | forward_convolutional_layer(wo, s);
|
| | |
|
| | | assert(l.inputs == uf.w * uf.h * uf.c);
|
| | | assert(uf.c == l.c && ui.c == l.c && ug.c == l.c && uo.c == l.c);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_convolutional_layer(uf, s);
|
| | | forward_convolutional_layer(ui, s);
|
| | | forward_convolutional_layer(ug, s);
|
| | | forward_convolutional_layer(uo, s);
|
| | |
|
| | | // f = wf + uf + vf
|
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1);
|
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vf.output, 1, l.f_cpu, 1);
|
| | |
|
| | | // i = wi + ui + vi
|
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1);
|
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vi.output, 1, l.i_cpu, 1);
|
| | |
|
| | | // g = wg + ug
|
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1);
|
| | |
|
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH);
|
| | |
|
| | | // c = f*c + i*g
|
| | | copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1);
|
| | |
|
| | | // o = wo + uo + vo(c_new)
|
| | | if (l.peephole) {
|
| | | s.input = l.c_cpu;
|
| | | forward_convolutional_layer(vo, s);
|
| | | }
|
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1);
|
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vo.output, 1, l.o_cpu, 1);
|
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // h = o * tanh(c)
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1);
|
| | | activate_array(l.h_cpu, l.outputs*l.batch, TANH);
|
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1);
|
| | |
|
| | | if (l.state_constrain) constrain_cpu(l.outputs*l.batch, l.state_constrain, l.c_cpu);
|
| | | fix_nan_and_inf_cpu(l.c_cpu, l.outputs*l.batch);
|
| | | fix_nan_and_inf_cpu(l.h_cpu, l.outputs*l.batch);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output += l.outputs*l.batch;
|
| | | l.cell_cpu += l.outputs*l.batch;
|
| | |
|
| | | if (l.peephole) {
|
| | | increment_layer(&vf, 1);
|
| | | increment_layer(&vi, 1);
|
| | | increment_layer(&vo, 1);
|
| | | }
|
| | |
|
| | | increment_layer(&wf, 1);
|
| | | increment_layer(&wi, 1);
|
| | | increment_layer(&wg, 1);
|
| | | increment_layer(&wo, 1);
|
| | |
|
| | | increment_layer(&uf, 1);
|
| | | increment_layer(&ui, 1);
|
| | | increment_layer(&ug, 1);
|
| | | increment_layer(&uo, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_conv_lstm_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer vf = *(l.vf);
|
| | | layer vi = *(l.vi);
|
| | | layer vo = *(l.vo);
|
| | |
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | if (l.peephole) {
|
| | | increment_layer(&vf, l.steps - 1);
|
| | | increment_layer(&vi, l.steps - 1);
|
| | | increment_layer(&vo, l.steps - 1);
|
| | | }
|
| | |
|
| | | increment_layer(&wf, l.steps - 1);
|
| | | increment_layer(&wi, l.steps - 1);
|
| | | increment_layer(&wg, l.steps - 1);
|
| | | increment_layer(&wo, l.steps - 1);
|
| | |
|
| | | increment_layer(&uf, l.steps - 1);
|
| | | increment_layer(&ui, l.steps - 1);
|
| | | increment_layer(&ug, l.steps - 1);
|
| | | increment_layer(&uo, l.steps - 1);
|
| | |
|
| | | state.input += l.inputs*l.batch*(l.steps - 1);
|
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1);
|
| | |
|
| | | l.output += l.outputs*l.batch*(l.steps - 1);
|
| | | l.cell_cpu += l.outputs*l.batch*(l.steps - 1);
|
| | | l.delta += l.outputs*l.batch*(l.steps - 1);
|
| | |
|
| | | for (i = l.steps - 1; i >= 0; --i) {
|
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1);
|
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1);
|
| | |
|
| | | l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch;
|
| | |
|
| | | // f = wf + uf + vf
|
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1);
|
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vf.output, 1, l.f_cpu, 1);
|
| | |
|
| | | // i = wi + ui + vi
|
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1);
|
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vi.output, 1, l.i_cpu, 1);
|
| | |
|
| | | // g = wg + ug
|
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1);
|
| | |
|
| | | // o = wo + uo + vo
|
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1);
|
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vo.output, 1, l.o_cpu, 1);
|
| | |
|
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH);
|
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1);
|
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1);
|
| | |
|
| | | gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu);
|
| | | axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1);
|
| | | // temp = tanh(c)
|
| | | // temp2 = delta * o * grad_tanh(tanh(c))
|
| | | // temp3 = delta
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1);
|
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH);
|
| | | mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu);
|
| | | // delta for o(w,u,v): temp = delta * tanh(c) * grad_logistic(o)
|
| | | // delta for c,f,i,g(w,u,v): temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???)
|
| | | // delta for output: temp3 = delta
|
| | |
|
| | | // o
|
| | | // delta for O(w,u,v): temp = delta * tanh(c) * grad_logistic(o)
|
| | | if (l.peephole) {
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, vo.delta, 1);
|
| | | s.input = l.cell_cpu;
|
| | | //s.delta = l.dc_cpu;
|
| | | backward_convolutional_layer(vo, s);
|
| | | }
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | //s.delta = l.dh_cpu;
|
| | | backward_convolutional_layer(wo, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer(uo, s);
|
| | |
|
| | | // g
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu);
|
| | | // delta for c,f,i,g(w,u,v): temp2 = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * g * grad_logistic(i)
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | //s.delta = l.dh_cpu;
|
| | | backward_convolutional_layer(wg, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer(ug, s);
|
| | |
|
| | | // i
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu);
|
| | | // delta for c,f,i,g(w,u,v): temp2 = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * g * grad_logistic(i)
|
| | |
|
| | | if (l.peephole) {
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, vi.delta, 1);
|
| | | s.input = l.prev_cell_cpu;
|
| | | //s.delta = l.dc_cpu;
|
| | | backward_convolutional_layer(vi, s);
|
| | | }
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | //s.delta = l.dh_cpu;
|
| | | backward_convolutional_layer(wi, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer(ui, s);
|
| | |
|
| | | // f
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu);
|
| | | // delta for c,f,i,g(w,u,v): temp2 = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * c * grad_logistic(f)
|
| | |
|
| | | if (l.peephole) {
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, vf.delta, 1);
|
| | | s.input = l.prev_cell_cpu;
|
| | | //s.delta = l.dc_cpu;
|
| | | backward_convolutional_layer(vf, s);
|
| | | }
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | //s.delta = l.dh_cpu;
|
| | | backward_convolutional_layer(wf, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer(uf, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1);
|
| | |
|
| | | state.input -= l.inputs*l.batch;
|
| | | if (state.delta) state.delta -= l.inputs*l.batch;
|
| | | l.output -= l.outputs*l.batch;
|
| | | l.cell_cpu -= l.outputs*l.batch;
|
| | | l.delta -= l.outputs*l.batch;
|
| | |
|
| | | if (l.peephole) {
|
| | | increment_layer(&vf, -1);
|
| | | increment_layer(&vi, -1);
|
| | | increment_layer(&vo, -1);
|
| | | }
|
| | |
|
| | | increment_layer(&wf, -1);
|
| | | increment_layer(&wi, -1);
|
| | | increment_layer(&wg, -1);
|
| | | increment_layer(&wo, -1);
|
| | |
|
| | | increment_layer(&uf, -1);
|
| | | increment_layer(&ui, -1);
|
| | | increment_layer(&ug, -1);
|
| | | increment_layer(&uo, -1);
|
| | | }
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | | void pull_conv_lstm_layer(layer l)
|
| | | {
|
| | | if (l.peephole) {
|
| | | pull_convolutional_layer(*(l.vf));
|
| | | pull_convolutional_layer(*(l.vi));
|
| | | pull_convolutional_layer(*(l.vo));
|
| | | }
|
| | | pull_convolutional_layer(*(l.wf));
|
| | | pull_convolutional_layer(*(l.wi));
|
| | | pull_convolutional_layer(*(l.wg));
|
| | | pull_convolutional_layer(*(l.wo));
|
| | | pull_convolutional_layer(*(l.uf));
|
| | | pull_convolutional_layer(*(l.ui));
|
| | | pull_convolutional_layer(*(l.ug));
|
| | | pull_convolutional_layer(*(l.uo));
|
| | | }
|
| | |
|
| | | void push_conv_lstm_layer(layer l)
|
| | | {
|
| | | if (l.peephole) {
|
| | | push_convolutional_layer(*(l.vf));
|
| | | push_convolutional_layer(*(l.vi));
|
| | | push_convolutional_layer(*(l.vo));
|
| | | }
|
| | | push_convolutional_layer(*(l.wf));
|
| | | push_convolutional_layer(*(l.wi));
|
| | | push_convolutional_layer(*(l.wg));
|
| | | push_convolutional_layer(*(l.wo));
|
| | | push_convolutional_layer(*(l.uf));
|
| | | push_convolutional_layer(*(l.ui));
|
| | | push_convolutional_layer(*(l.ug));
|
| | | push_convolutional_layer(*(l.uo));
|
| | | }
|
| | |
|
| | | void update_conv_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
|
| | | {
|
| | | if (l.peephole) {
|
| | | update_convolutional_layer_gpu(*(l.vf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.vi), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.vo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | }
|
| | | update_convolutional_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | }
|
| | |
|
| | | void forward_conv_lstm_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() )
|
| | | int i;
|
| | | layer vf = *(l.vf);
|
| | | layer vi = *(l.vi);
|
| | | layer vo = *(l.vo);
|
| | |
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | if (state.train) {
|
| | | if (l.peephole) {
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, vf.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, vi.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, vo.delta_gpu, 1);
|
| | | }
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1);
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1);
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i)
|
| | | {
|
| | | if (l.peephole) {
|
| | | assert(l.outputs == vf.out_w * vf.out_h * vf.out_c);
|
| | | s.input = l.c_gpu;
|
| | | forward_convolutional_layer_gpu(vf, s);
|
| | | forward_convolutional_layer_gpu(vi, s);
|
| | | // vo below
|
| | | }
|
| | |
|
| | | assert(l.outputs == wf.out_w * wf.out_h * wf.out_c);
|
| | | assert(wf.c == l.out_c && wi.c == l.out_c && wg.c == l.out_c && wo.c == l.out_c);
|
| | |
|
| | | s.input = l.h_gpu;
|
| | | forward_convolutional_layer_gpu(wf, s);
|
| | | forward_convolutional_layer_gpu(wi, s);
|
| | | forward_convolutional_layer_gpu(wg, s);
|
| | | forward_convolutional_layer_gpu(wo, s);
|
| | |
|
| | | assert(l.inputs == uf.w * uf.h * uf.c);
|
| | | assert(uf.c == l.c && ui.c == l.c && ug.c == l.c && uo.c == l.c);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_convolutional_layer_gpu(uf, s);
|
| | | forward_convolutional_layer_gpu(ui, s);
|
| | | forward_convolutional_layer_gpu(ug, s);
|
| | | forward_convolutional_layer_gpu(uo, s);
|
| | |
|
| | | // f = wf + uf + vf
|
| | | add_3_arrays_activate(wf.output_gpu, uf.output_gpu, (l.peephole)?vf.output_gpu:NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vf.output_gpu, 1, l.f_gpu, 1);
|
| | | //activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // i = wi + ui + vi
|
| | | add_3_arrays_activate(wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vi.output_gpu, 1, l.i_gpu, 1);
|
| | | //activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // g = wg + ug
|
| | | add_3_arrays_activate(wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, TANH, l.g_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1);
|
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH);
|
| | |
|
| | | // c = f*c + i*g
|
| | | sum_of_mults(l.f_gpu, l.c_gpu, l.i_gpu, l.g_gpu, l.outputs*l.batch, l.c_gpu); // decreases mAP???
|
| | | //copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1);
|
| | | //mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1);
|
| | | //mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1);
|
| | |
|
| | | // o = wo + uo + vo(c_new)
|
| | | if (l.peephole) {
|
| | | s.input = l.c_gpu;
|
| | | forward_convolutional_layer_gpu(vo, s);
|
| | | }
|
| | | add_3_arrays_activate(wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vo.output_gpu, 1, l.o_gpu, 1);
|
| | | //activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // h = o * tanh(c)
|
| | | activate_and_mult(l.c_gpu, l.o_gpu, l.outputs*l.batch, TANH, l.h_gpu);
|
| | | //simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.h_gpu);
|
| | | //activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
|
| | | //mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1);
|
| | |
|
| | | fix_nan_and_inf(l.c_gpu, l.outputs*l.batch);
|
| | | fix_nan_and_inf(l.h_gpu, l.outputs*l.batch);
|
| | | if (l.state_constrain) constrain_ongpu(l.outputs*l.batch, l.state_constrain, l.c_gpu, 1);
|
| | |
|
| | | if(state.train) simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.cell_gpu);
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.h_gpu, l.output_gpu); // is required for both Detection and Training
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output_gpu += l.outputs*l.batch;
|
| | | l.cell_gpu += l.outputs*l.batch;
|
| | |
|
| | | if (l.peephole) {
|
| | | increment_layer(&vf, 1);
|
| | | increment_layer(&vi, 1);
|
| | | increment_layer(&vo, 1);
|
| | | }
|
| | |
|
| | | increment_layer(&wf, 1);
|
| | | increment_layer(&wi, 1);
|
| | | increment_layer(&wg, 1);
|
| | | increment_layer(&wo, 1);
|
| | |
|
| | | increment_layer(&uf, 1);
|
| | | increment_layer(&ui, 1);
|
| | | increment_layer(&ug, 1);
|
| | | increment_layer(&uo, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_conv_lstm_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | float *last_output = l.output_gpu + l.outputs*l.batch*(l.steps - 1);
|
| | | float *last_cell = l.cell_gpu + l.outputs*l.batch*(l.steps - 1);
|
| | |
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | int i;
|
| | | layer vf = *(l.vf);
|
| | | layer vi = *(l.vi);
|
| | | layer vo = *(l.vo);
|
| | |
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | if (l.peephole) {
|
| | | increment_layer(&vf, l.steps - 1);
|
| | | increment_layer(&vi, l.steps - 1);
|
| | | increment_layer(&vo, l.steps - 1);
|
| | | }
|
| | |
|
| | | increment_layer(&wf, l.steps - 1);
|
| | | increment_layer(&wi, l.steps - 1);
|
| | | increment_layer(&wg, l.steps - 1);
|
| | | increment_layer(&wo, l.steps - 1);
|
| | |
|
| | | increment_layer(&uf, l.steps - 1);
|
| | | increment_layer(&ui, l.steps - 1);
|
| | | increment_layer(&ug, l.steps - 1);
|
| | | increment_layer(&uo, l.steps - 1);
|
| | |
|
| | | state.input += l.inputs*l.batch*(l.steps - 1);
|
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1);
|
| | |
|
| | | l.output_gpu += l.outputs*l.batch*(l.steps - 1);
|
| | | l.cell_gpu += l.outputs*l.batch*(l.steps - 1);
|
| | | l.delta_gpu += l.outputs*l.batch*(l.steps - 1);
|
| | |
|
| | | //fill_ongpu(l.outputs * l.batch, 0, l.dc_gpu, 1); // dont use
|
| | | const int sequence = get_sequence_value(state.net);
|
| | |
|
| | | for (i = l.steps - 1; i >= 0; --i) {
|
| | | if (i != 0) simple_copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, l.prev_cell_gpu);
|
| | | //else fill_ongpu(l.outputs * l.batch, 0, l.prev_cell_gpu, 1); // dont use
|
| | | else if (state.net.current_subdivision % sequence != 0) simple_copy_ongpu(l.outputs*l.batch, l.last_prev_cell_gpu, l.prev_cell_gpu);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.cell_gpu, l.c_gpu);
|
| | |
|
| | | if (i != 0) simple_copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, l.prev_state_gpu);
|
| | | //else fill_ongpu(l.outputs * l.batch, 0, l.prev_state_gpu, 1); // dont use
|
| | | else if(state.net.current_subdivision % sequence != 0) simple_copy_ongpu(l.outputs*l.batch, l.last_prev_state_gpu, l.prev_state_gpu);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.h_gpu);
|
| | |
|
| | | l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
|
| | |
|
| | | // f = wf + uf + vf
|
| | | add_3_arrays_activate(wf.output_gpu, uf.output_gpu, (l.peephole) ? vf.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vf.output_gpu, 1, l.f_gpu, 1);
|
| | | //activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // i = wi + ui + vi
|
| | | add_3_arrays_activate(wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vi.output_gpu, 1, l.i_gpu, 1);
|
| | | //activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // g = wg + ug
|
| | | add_3_arrays_activate(wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, TANH, l.g_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1);
|
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH);
|
| | |
|
| | | // o = wo + uo + vo
|
| | | add_3_arrays_activate(wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu);
|
| | | //copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vo.output_gpu, 1, l.o_gpu, 1);
|
| | | //activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, l.temp3_gpu); // temp3 = delta
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.temp_gpu);
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); // temp = tanh(c)
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp3_gpu, l.temp2_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); // temp2 = delta * o
|
| | |
|
| | | gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu); // temp2 = delta * o * grad_tanh(tanh(c))
|
| | | //???
|
| | | axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); // temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???)
|
| | | // temp = tanh(c)
|
| | | // temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???)
|
| | | // temp3 = delta
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.temp_gpu);
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); // temp = tanh(c)
|
| | |
|
| | | mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); // temp = delta * tanh(c)
|
| | | gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); // temp = delta * tanh(c) * grad_logistic(o)
|
| | | // delta for o(w,u,v): temp = delta * tanh(c) * grad_logistic(o)
|
| | | // delta for c,f,i,g(w,u,v): temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???)
|
| | | // delta for output: temp3 = delta
|
| | |
|
| | | // o
|
| | | // delta for O(w,u,v): temp = delta * tanh(c) * grad_logistic(o)
|
| | | if (l.peephole) {
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, vo.delta_gpu);
|
| | | s.input = l.cell_gpu;
|
| | | //s.delta = l.dc_gpu;
|
| | | backward_convolutional_layer_gpu(vo, s);
|
| | | }
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wo.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wo, s);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, uo.delta_gpu);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer_gpu(uo, s);
|
| | |
|
| | | // g
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu);
|
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * i * grad_tanh(g)
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wg.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wg, s);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, ug.delta_gpu);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer_gpu(ug, s);
|
| | |
|
| | | // i
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu);
|
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * g * grad_logistic(i)
|
| | |
|
| | | if (l.peephole) {
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, vi.delta_gpu);
|
| | | s.input = l.prev_cell_gpu;
|
| | | //s.delta = l.dc_gpu;
|
| | | backward_convolutional_layer_gpu(vi, s);
|
| | | }
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wi.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wi, s);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, ui.delta_gpu);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer_gpu(ui, s);
|
| | |
|
| | | // f
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu);
|
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * c * grad_logistic(f)
|
| | |
|
| | | if (l.peephole) {
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, vf.delta_gpu);
|
| | | s.input = l.prev_cell_gpu;
|
| | | //s.delta = l.dc_gpu;
|
| | | backward_convolutional_layer_gpu(vf, s);
|
| | | }
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wf.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wf, s);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, uf.delta_gpu);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_convolutional_layer_gpu(uf, s);
|
| | |
|
| | | // c
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1);
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, l.dc_gpu);
|
| | | fix_nan_and_inf(l.dc_gpu, l.outputs*l.batch);
|
| | | // delta for c,f,i,g(w,u,v): delta_c = temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * f // (grad_linear(c)==1)
|
| | |
|
| | | state.input -= l.inputs*l.batch;
|
| | | if (state.delta) state.delta -= l.inputs*l.batch; // new delta: state.delta = prev_layer.delta_gpu;
|
| | | l.output_gpu -= l.outputs*l.batch;
|
| | | l.cell_gpu -= l.outputs*l.batch;
|
| | | l.delta_gpu -= l.outputs*l.batch;
|
| | |
|
| | | if (l.peephole) {
|
| | | increment_layer(&vf, -1);
|
| | | increment_layer(&vi, -1);
|
| | | increment_layer(&vo, -1);
|
| | | }
|
| | |
|
| | | increment_layer(&wf, -1);
|
| | | increment_layer(&wi, -1);
|
| | | increment_layer(&wg, -1);
|
| | | increment_layer(&wo, -1);
|
| | |
|
| | | increment_layer(&uf, -1);
|
| | | increment_layer(&ui, -1);
|
| | | increment_layer(&ug, -1);
|
| | | increment_layer(&uo, -1);
|
| | | }
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, last_output, l.last_prev_state_gpu);
|
| | | simple_copy_ongpu(l.outputs*l.batch, last_cell, l.last_prev_cell_gpu);
|
| | |
|
| | | // free state after each 100 iterations
|
| | | //if (get_current_batch(state.net) % 100) free_state_conv_lstm(l); // dont use
|
| | | }
|
| | | #endif
|
| | | // Page 4: https://arxiv.org/abs/1506.04214v2 |
| | | // Page 3: https://arxiv.org/pdf/1705.06368v3.pdf |
| | | // https://wikimedia.org/api/rest_v1/media/math/render/svg/1edbece2559479959fe829e9c6657efb380debe7 |
| | | |
| | | #include "conv_lstm_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | static void increment_layer(layer *l, int steps) |
| | | { |
| | | int num = l->outputs*l->batch*steps; |
| | | l->output += num; |
| | | l->delta += num; |
| | | l->x += num; |
| | | l->x_norm += num; |
| | | |
| | | #ifdef GPU |
| | | l->output_gpu += num; |
| | | l->delta_gpu += num; |
| | | l->x_gpu += num; |
| | | l->x_norm_gpu += num; |
| | | #endif |
| | | } |
| | | |
| | | |
| | | layer make_conv_lstm_layer(int batch, int h, int w, int c, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int peephole, int xnor, int bottleneck, int train) |
| | | { |
| | | fprintf(stderr, "CONV_LSTM Layer: %d x %d x %d image, %d filters\n", h, w, c, output_filters); |
| | | /* |
| | | batch = batch / steps; |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.batch = batch; |
| | | l.type = LSTM; |
| | | l.steps = steps; |
| | | l.inputs = inputs; |
| | | l.out_w = 1; |
| | | l.out_h = 1; |
| | | l.out_c = outputs; |
| | | */ |
| | | batch = batch / steps; |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.train = train; |
| | | l.batch = batch; |
| | | l.type = CONV_LSTM; |
| | | l.bottleneck = bottleneck; |
| | | l.steps = steps; |
| | | l.size = size; |
| | | l.stride = stride; |
| | | l.dilation = dilation; |
| | | l.pad = pad; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.groups = groups; |
| | | l.out_c = output_filters; |
| | | l.inputs = h * w * c; |
| | | l.xnor = xnor; |
| | | l.peephole = peephole; |
| | | |
| | | // U |
| | | l.uf = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.uf) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.uf->batch = batch; |
| | | if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size; |
| | | |
| | | l.ui = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.ui) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.ui->batch = batch; |
| | | if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size; |
| | | |
| | | l.ug = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.ug) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.ug->batch = batch; |
| | | if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size; |
| | | |
| | | l.uo = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.uo) = make_convolutional_layer(batch, steps, h, w, c, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.uo->batch = batch; |
| | | if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size; |
| | | |
| | | if (l.bottleneck) { |
| | | // bottleneck-conv with 2x channels |
| | | l.wf = (layer*)xcalloc(1, sizeof(layer)); |
| | | l.wi = (layer*)xcalloc(1, sizeof(layer)); |
| | | l.wg = (layer*)xcalloc(1, sizeof(layer)); |
| | | l.wo = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.wf) = make_convolutional_layer(batch, steps, h, w, output_filters*2, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.wf->batch = batch; |
| | | if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; |
| | | } |
| | | else { |
| | | // W |
| | | l.wf = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.wf) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.wf->batch = batch; |
| | | if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; |
| | | |
| | | l.wi = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.wi) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.wi->batch = batch; |
| | | if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size; |
| | | |
| | | l.wg = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.wg) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.wg->batch = batch; |
| | | if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size; |
| | | |
| | | l.wo = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.wo) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.wo->batch = batch; |
| | | if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size; |
| | | } |
| | | |
| | | // V |
| | | l.vf = (layer*)xcalloc(1, sizeof(layer)); |
| | | if (l.peephole) { |
| | | *(l.vf) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.vf->batch = batch; |
| | | if (l.workspace_size < l.vf->workspace_size) l.workspace_size = l.vf->workspace_size; |
| | | } |
| | | |
| | | l.vi = (layer*)xcalloc(1, sizeof(layer)); |
| | | if (l.peephole) { |
| | | *(l.vi) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.vi->batch = batch; |
| | | if (l.workspace_size < l.vi->workspace_size) l.workspace_size = l.vi->workspace_size; |
| | | } |
| | | |
| | | l.vo = (layer*)xcalloc(1, sizeof(layer)); |
| | | if (l.peephole) { |
| | | *(l.vo) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.vo->batch = batch; |
| | | if (l.workspace_size < l.vo->workspace_size) l.workspace_size = l.vo->workspace_size; |
| | | } |
| | | |
| | | |
| | | l.batch_normalize = batch_normalize; |
| | | |
| | | l.out_h = l.uo->out_h; |
| | | l.out_w = l.uo->out_w; |
| | | l.outputs = l.uo->outputs; |
| | | int outputs = l.outputs; |
| | | l.inputs = w*h*c; |
| | | |
| | | if (!l.bottleneck) assert(l.wo->outputs == l.uo->outputs); |
| | | assert(l.wf->outputs == l.uf->outputs); |
| | | |
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); |
| | | //l.state = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | |
| | | l.forward = forward_conv_lstm_layer; |
| | | l.update = update_conv_lstm_layer; |
| | | l.backward = backward_conv_lstm_layer; |
| | | |
| | | l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float)); |
| | | |
| | | l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.stored_c_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.stored_h_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | |
| | | /* |
| | | { |
| | | int k; |
| | | for (k = 0; k < l.uf->n; ++k) { |
| | | l.uf->biases[k] = 2; // ~0.9 |
| | | l.ui->biases[k] = -22; // ~0.1 |
| | | l.uo->biases[k] = 5; // ~1.0 |
| | | } |
| | | #ifdef GPU |
| | | cuda_push_array(l.uf->biases_gpu, l.uf->biases, l.n); |
| | | cuda_push_array(l.ui->biases_gpu, l.ui->biases, l.n); |
| | | cuda_push_array(l.uo->biases_gpu, l.uo->biases, l.n); |
| | | #endif// GPU |
| | | } |
| | | */ |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_conv_lstm_layer_gpu; |
| | | l.backward_gpu = backward_conv_lstm_layer_gpu; |
| | | l.update_gpu = update_conv_lstm_layer_gpu; |
| | | |
| | | //l.state_gpu = cuda_make_array(l.state, batch*l.outputs); |
| | | |
| | | l.output_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps); |
| | | |
| | | l.prev_state_gpu = cuda_make_array(0, batch*outputs); |
| | | l.prev_cell_gpu = cuda_make_array(0, batch*outputs); |
| | | l.cell_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | |
| | | l.f_gpu = cuda_make_array(0, batch*outputs); |
| | | l.i_gpu = cuda_make_array(0, batch*outputs); |
| | | l.g_gpu = cuda_make_array(0, batch*outputs); |
| | | l.o_gpu = cuda_make_array(0, batch*outputs); |
| | | l.c_gpu = cuda_make_array(0, batch*outputs); |
| | | if (l.bottleneck) { |
| | | l.bottelneck_hi_gpu = cuda_make_array(0, batch*outputs * 2); |
| | | l.bottelneck_delta_gpu = cuda_make_array(0, batch*outputs * 2); |
| | | } |
| | | l.h_gpu = cuda_make_array(0, batch*outputs); |
| | | l.stored_c_gpu = cuda_make_array(0, batch*outputs); |
| | | l.stored_h_gpu = cuda_make_array(0, batch*outputs); |
| | | l.temp_gpu = cuda_make_array(0, batch*outputs); |
| | | l.temp2_gpu = cuda_make_array(0, batch*outputs); |
| | | l.temp3_gpu = cuda_make_array(0, batch*outputs); |
| | | l.dc_gpu = cuda_make_array(0, batch*outputs); |
| | | l.dh_gpu = cuda_make_array(0, batch*outputs); |
| | | l.last_prev_state_gpu = cuda_make_array(0, l.batch*l.outputs); |
| | | l.last_prev_cell_gpu = cuda_make_array(0, l.batch*l.outputs); |
| | | #endif |
| | | |
| | | l.bflops = l.uf->bflops + l.ui->bflops + l.ug->bflops + l.uo->bflops + |
| | | l.wf->bflops + l.wi->bflops + l.wg->bflops + l.wo->bflops + |
| | | l.vf->bflops + l.vi->bflops + l.vo->bflops; |
| | | |
| | | if(l.peephole) l.bflops += 12 * l.outputs*l.batch / 1000000000.; |
| | | else l.bflops += 9 * l.outputs*l.batch / 1000000000.; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer make_history_layer(int batch, int h, int w, int c, int history_size, int steps, int train) |
| | | { |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.train = train; |
| | | l.batch = batch; |
| | | l.type = HISTORY; |
| | | l.steps = steps; |
| | | l.history_size = history_size; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.out_h = h; |
| | | l.out_w = w; |
| | | l.out_c = c * history_size; |
| | | l.inputs = h * w * c; |
| | | l.outputs = h * w * c * history_size; |
| | | |
| | | l.forward = forward_history_layer; |
| | | l.backward = backward_history_layer; |
| | | |
| | | fprintf(stderr, "HISTORY b = %d, s = %2d, steps = %2d %4d x%4d x%4d -> %4d x%4d x%4d \n", l.batch / l.steps, l.history_size, l.steps, w, h, c, l.out_w, l.out_h, l.out_c); |
| | | |
| | | l.output = (float*)xcalloc(l.batch * l.outputs, sizeof(float)); |
| | | l.delta = (float*)xcalloc(l.batch * l.outputs, sizeof(float)); |
| | | |
| | | l.prev_state_cpu = (float*)xcalloc(l.batch*l.outputs, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | |
| | | l.forward_gpu = forward_history_layer_gpu; |
| | | l.backward_gpu = backward_history_layer_gpu; |
| | | |
| | | l.output_gpu = cuda_make_array(0, l.batch * l.outputs); |
| | | l.delta_gpu = cuda_make_array(0, l.batch * l.outputs); |
| | | |
| | | l.prev_state_gpu = cuda_make_array(0, l.batch*l.outputs); |
| | | |
| | | #endif // GPU |
| | | |
| | | //l.batch = 4; |
| | | //l.steps = 1; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void forward_history_layer(layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | copy_cpu(l.inputs*l.batch, state.input, 1, l.output, 1); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | float *prev_output = l.prev_state_cpu; |
| | | |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | // shift cell |
| | | int shift_size = l.inputs * (l.history_size - 1); |
| | | int output_sift = l.inputs; |
| | | |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *input = state.input + input_start; |
| | | float *output = l.output + output_start; |
| | | |
| | | copy_cpu(shift_size, prev_output + b*l.outputs, 1, output + output_sift, 1); |
| | | |
| | | copy_cpu(l.inputs, input, 1, output, 1); |
| | | } |
| | | prev_output = l.output + i*l.outputs*batch; |
| | | } |
| | | |
| | | int output_start = (l.steps-1)*l.outputs*batch; |
| | | copy_cpu(batch*l.outputs, l.output + output_start, 1, l.prev_state_cpu, 1); |
| | | } |
| | | |
| | | void backward_history_layer(layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, state.delta, 1); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | // l.delta -> state.delta |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *state_delta = state.delta + input_start; |
| | | float *l_delta = l.delta + output_start; |
| | | |
| | | //copy_cpu(l.inputs, l_delta, 1, state_delta, 1); |
| | | axpy_cpu(l.inputs, 1, l_delta, 1, state_delta, 1); |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_history_layer_gpu(const layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | simple_copy_ongpu(l.inputs*l.batch, state.input, l.output_gpu); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | //int copy_size = l.inputs*batch*l.steps; |
| | | //printf(" copy_size = %d, inputs = %d, batch = %d, steps = %d, l.history_size = %d \n", copy_size, l.inputs, batch, l.steps, l.history_size); |
| | | //simple_copy_ongpu(copy_size, state.input, l.output_gpu); |
| | | //return; |
| | | |
| | | //fill_ongpu(batch*l.outputs, 0, l.prev_state_gpu, 1); |
| | | float *prev_output = l.prev_state_gpu; |
| | | |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | // shift cell |
| | | int shift_size = l.inputs * (l.history_size - 1); |
| | | int output_sift = l.inputs; |
| | | |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | //printf(" hist-fw: i = %d, b = %d \n", i, b); |
| | | |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *input = state.input + input_start; |
| | | float *output = l.output_gpu + output_start; |
| | | |
| | | //copy_cpu(shift_size, prev_output + b*l.outputs, 1, output + output_sift, 1); |
| | | simple_copy_ongpu(shift_size, prev_output + b*l.outputs, output + output_sift); |
| | | |
| | | //copy_cpu(l.inputs, input, 1, output, 1); |
| | | simple_copy_ongpu(l.inputs, input, output); |
| | | |
| | | int h; |
| | | for (h = 1; h < l.history_size; ++h) { |
| | | //scal_ongpu(l.inputs, (l.history_size - h)/ (float)l.history_size, output + h*l.inputs, 1); |
| | | //scal_ongpu(l.inputs, 0, output + h*l.inputs, 1); |
| | | } |
| | | } |
| | | prev_output = l.output_gpu + i*l.outputs*batch; |
| | | } |
| | | |
| | | int output_start = (l.steps - 1)*l.outputs*batch; |
| | | //copy_cpu(batch*l.outputs, l.output + output_start, 1, l.prev_state_cpu, 1); |
| | | simple_copy_ongpu(batch*l.outputs, l.output_gpu + output_start, l.prev_state_gpu); |
| | | } |
| | | |
| | | void backward_history_layer_gpu(const layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | axpy_ongpu(l.inputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | //int copy_size = l.inputs*batch*l.steps; |
| | | //printf(" copy_size = %d, inputs = %d, batch = %d, steps = %d, l.history_size = %d \n", copy_size, l.inputs, batch, l.steps, l.history_size); |
| | | //axpy_ongpu(copy_size, 1, l.delta_gpu, 1, state.delta, 1); |
| | | //return; |
| | | |
| | | // l.delta -> state.delta |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | //printf(" hist-bw: i = %d, b = %d \n", i, b); |
| | | |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *state_delta = state.delta + input_start; |
| | | float *l_delta = l.delta_gpu + output_start; |
| | | |
| | | //copy_cpu(l.inputs, l_delta, 1, state_delta, 1); |
| | | axpy_ongpu(l.inputs, 1, l_delta, 1, state_delta, 1); |
| | | } |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | |
| | | void update_conv_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | if (l.peephole) { |
| | | update_convolutional_layer(*(l.vf), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.vi), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.vo), batch, learning_rate, momentum, decay); |
| | | } |
| | | update_convolutional_layer(*(l.wf), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.wi), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.wg), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.wo), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.uf), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.ui), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.ug), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.uo), batch, learning_rate, momentum, decay); |
| | | } |
| | | |
| | | void resize_conv_lstm_layer(layer *l, int w, int h) |
| | | { |
| | | if (l->peephole) { |
| | | resize_convolutional_layer(l->vf, w, h); |
| | | if (l->workspace_size < l->vf->workspace_size) l->workspace_size = l->vf->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->vi, w, h); |
| | | if (l->workspace_size < l->vi->workspace_size) l->workspace_size = l->vi->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->vo, w, h); |
| | | if (l->workspace_size < l->vo->workspace_size) l->workspace_size = l->vo->workspace_size; |
| | | } |
| | | |
| | | resize_convolutional_layer(l->wf, w, h); |
| | | if (l->workspace_size < l->wf->workspace_size) l->workspace_size = l->wf->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->wi, w, h); |
| | | if (l->workspace_size < l->wi->workspace_size) l->workspace_size = l->wi->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->wg, w, h); |
| | | if (l->workspace_size < l->wg->workspace_size) l->workspace_size = l->wg->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->wo, w, h); |
| | | if (l->workspace_size < l->wo->workspace_size) l->workspace_size = l->wo->workspace_size; |
| | | |
| | | |
| | | resize_convolutional_layer(l->uf, w, h); |
| | | if (l->workspace_size < l->uf->workspace_size) l->workspace_size = l->uf->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->ui, w, h); |
| | | if (l->workspace_size < l->ui->workspace_size) l->workspace_size = l->ui->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->ug, w, h); |
| | | if (l->workspace_size < l->ug->workspace_size) l->workspace_size = l->ug->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->uo, w, h); |
| | | if (l->workspace_size < l->uo->workspace_size) l->workspace_size = l->uo->workspace_size; |
| | | |
| | | l->w = w; |
| | | l->h = h; |
| | | l->out_h = l->wo->out_h; |
| | | l->out_w = l->wo->out_w; |
| | | l->outputs = l->wo->outputs; |
| | | int outputs = l->outputs; |
| | | l->inputs = w*h*l->c; |
| | | int steps = l->steps; |
| | | int batch = l->batch; |
| | | |
| | | assert(l->wo->outputs == l->uo->outputs); |
| | | |
| | | l->output = (float*)xrealloc(l->output, outputs * batch * steps * sizeof(float)); |
| | | //l->state = (float*)xrealloc(l->state, outputs * batch * sizeof(float)); |
| | | |
| | | l->prev_state_cpu = (float*)xrealloc(l->prev_state_cpu, batch*outputs * sizeof(float)); |
| | | l->prev_cell_cpu = (float*)xrealloc(l->prev_cell_cpu, batch*outputs * sizeof(float)); |
| | | l->cell_cpu = (float*)xrealloc(l->cell_cpu, batch*outputs*steps * sizeof(float)); |
| | | |
| | | l->f_cpu = (float*)xrealloc(l->f_cpu, batch*outputs * sizeof(float)); |
| | | l->i_cpu = (float*)xrealloc(l->i_cpu, batch*outputs * sizeof(float)); |
| | | l->g_cpu = (float*)xrealloc(l->g_cpu, batch*outputs * sizeof(float)); |
| | | l->o_cpu = (float*)xrealloc(l->o_cpu, batch*outputs * sizeof(float)); |
| | | l->c_cpu = (float*)xrealloc(l->c_cpu, batch*outputs * sizeof(float)); |
| | | l->h_cpu = (float*)xrealloc(l->h_cpu, batch*outputs * sizeof(float)); |
| | | l->temp_cpu = (float*)xrealloc(l->temp_cpu, batch*outputs * sizeof(float)); |
| | | l->temp2_cpu = (float*)xrealloc(l->temp2_cpu, batch*outputs * sizeof(float)); |
| | | l->temp3_cpu = (float*)xrealloc(l->temp3_cpu, batch*outputs * sizeof(float)); |
| | | l->dc_cpu = (float*)xrealloc(l->dc_cpu, batch*outputs * sizeof(float)); |
| | | l->dh_cpu = (float*)xrealloc(l->dh_cpu, batch*outputs * sizeof(float)); |
| | | l->stored_c_cpu = (float*)xrealloc(l->stored_c_cpu, batch*outputs * sizeof(float)); |
| | | l->stored_h_cpu = (float*)xrealloc(l->stored_h_cpu, batch*outputs * sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | //if (l->state_gpu) cudaFree(l->state_gpu); |
| | | //l->state_gpu = cuda_make_array(l->state, batch*l->outputs); |
| | | |
| | | if (l->output_gpu) cudaFree(l->output_gpu); |
| | | l->output_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | |
| | | if (l->delta_gpu) cudaFree(l->delta_gpu); |
| | | l->delta_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | |
| | | if (l->prev_state_gpu) cudaFree(l->prev_state_gpu); |
| | | l->prev_state_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->prev_cell_gpu) cudaFree(l->prev_cell_gpu); |
| | | l->prev_cell_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->cell_gpu) cudaFree(l->cell_gpu); |
| | | l->cell_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | |
| | | if (l->f_gpu) cudaFree(l->f_gpu); |
| | | l->f_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->i_gpu) cudaFree(l->i_gpu); |
| | | l->i_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->g_gpu) cudaFree(l->g_gpu); |
| | | l->g_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->o_gpu) cudaFree(l->o_gpu); |
| | | l->o_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->c_gpu) cudaFree(l->c_gpu); |
| | | l->c_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->h_gpu) cudaFree(l->h_gpu); |
| | | l->h_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->temp_gpu) cudaFree(l->temp_gpu); |
| | | l->temp_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->temp2_gpu) cudaFree(l->temp2_gpu); |
| | | l->temp2_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->temp3_gpu) cudaFree(l->temp3_gpu); |
| | | l->temp3_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->dc_gpu) cudaFree(l->dc_gpu); |
| | | l->dc_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->dh_gpu) cudaFree(l->dh_gpu); |
| | | l->dh_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->stored_c_gpu) cudaFree(l->stored_c_gpu); |
| | | l->stored_c_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->stored_h_gpu) cudaFree(l->stored_h_gpu); |
| | | l->stored_h_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->last_prev_state_gpu) cudaFree(l->last_prev_state_gpu); |
| | | l->last_prev_state_gpu = cuda_make_array(0, batch*outputs); |
| | | |
| | | if (l->last_prev_cell_gpu) cudaFree(l->last_prev_cell_gpu); |
| | | l->last_prev_cell_gpu = cuda_make_array(0, batch*outputs); |
| | | #endif |
| | | } |
| | | |
| | | void free_state_conv_lstm(layer l) |
| | | { |
| | | int i; |
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.h_cpu[i] = 0; |
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.c_cpu[i] = 0; |
| | | |
| | | #ifdef GPU |
| | | cuda_push_array(l.h_gpu, l.h_cpu, l.outputs * l.batch); |
| | | cuda_push_array(l.c_gpu, l.c_cpu, l.outputs * l.batch); |
| | | |
| | | //fill_ongpu(l.outputs * l.batch, 0, l.dc_gpu, 1); // dont use |
| | | //fill_ongpu(l.outputs * l.batch, 0, l.dh_gpu, 1); // dont use |
| | | #endif // GPU |
| | | } |
| | | |
| | | void randomize_state_conv_lstm(layer l) |
| | | { |
| | | int i; |
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.h_cpu[i] = rand_uniform(-1, 1); |
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.c_cpu[i] = rand_uniform(-1, 1); |
| | | |
| | | #ifdef GPU |
| | | cuda_push_array(l.h_gpu, l.h_cpu, l.outputs * l.batch); |
| | | cuda_push_array(l.c_gpu, l.c_cpu, l.outputs * l.batch); |
| | | #endif // GPU |
| | | } |
| | | |
| | | |
| | | void remember_state_conv_lstm(layer l) |
| | | { |
| | | memcpy(l.stored_c_cpu, l.c_cpu, l.outputs * l.batch * sizeof(float)); |
| | | memcpy(l.stored_h_cpu, l.h_cpu, l.outputs * l.batch * sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.stored_c_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.stored_h_gpu, 1); |
| | | #endif // GPU |
| | | } |
| | | |
| | | void restore_state_conv_lstm(layer l) |
| | | { |
| | | memcpy(l.c_cpu, l.stored_c_cpu, l.outputs * l.batch * sizeof(float)); |
| | | memcpy(l.h_cpu, l.stored_h_cpu, l.outputs * l.batch * sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | copy_ongpu(l.outputs*l.batch, l.stored_c_gpu, 1, l.c_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.stored_h_gpu, 1, l.h_gpu, 1); |
| | | #endif // GPU |
| | | } |
| | | |
| | | void forward_conv_lstm_layer(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | int i; |
| | | layer vf = *(l.vf); |
| | | layer vi = *(l.vi); |
| | | layer vo = *(l.vo); |
| | | |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | if (state.train) { |
| | | if (l.peephole) { |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, vf.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, vi.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, vo.delta, 1); |
| | | } |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) |
| | | { |
| | | if (l.peephole) { |
| | | assert(l.outputs == vf.out_w * vf.out_h * vf.out_c); |
| | | s.input = l.c_cpu; |
| | | forward_convolutional_layer(vf, s); |
| | | forward_convolutional_layer(vi, s); |
| | | // vo below |
| | | } |
| | | |
| | | assert(l.outputs == wf.out_w * wf.out_h * wf.out_c); |
| | | assert(wf.c == l.out_c && wi.c == l.out_c && wg.c == l.out_c && wo.c == l.out_c); |
| | | |
| | | s.input = l.h_cpu; |
| | | forward_convolutional_layer(wf, s); |
| | | forward_convolutional_layer(wi, s); |
| | | forward_convolutional_layer(wg, s); |
| | | forward_convolutional_layer(wo, s); |
| | | |
| | | assert(l.inputs == uf.w * uf.h * uf.c); |
| | | assert(uf.c == l.c && ui.c == l.c && ug.c == l.c && uo.c == l.c); |
| | | |
| | | s.input = state.input; |
| | | forward_convolutional_layer(uf, s); |
| | | forward_convolutional_layer(ui, s); |
| | | forward_convolutional_layer(ug, s); |
| | | forward_convolutional_layer(uo, s); |
| | | |
| | | // f = wf + uf + vf |
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); |
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vf.output, 1, l.f_cpu, 1); |
| | | |
| | | // i = wi + ui + vi |
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); |
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vi.output, 1, l.i_cpu, 1); |
| | | |
| | | // g = wg + ug |
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); |
| | | |
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH); |
| | | |
| | | // c = f*c + i*g |
| | | copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1); |
| | | |
| | | // o = wo + uo + vo(c_new) |
| | | if (l.peephole) { |
| | | s.input = l.c_cpu; |
| | | forward_convolutional_layer(vo, s); |
| | | } |
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); |
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vo.output, 1, l.o_cpu, 1); |
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | // h = o * tanh(c) |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1); |
| | | activate_array(l.h_cpu, l.outputs*l.batch, TANH); |
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1); |
| | | |
| | | if (l.state_constrain) constrain_cpu(l.outputs*l.batch, l.state_constrain, l.c_cpu); |
| | | fix_nan_and_inf_cpu(l.c_cpu, l.outputs*l.batch); |
| | | fix_nan_and_inf_cpu(l.h_cpu, l.outputs*l.batch); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | l.output += l.outputs*l.batch; |
| | | l.cell_cpu += l.outputs*l.batch; |
| | | |
| | | if (l.peephole) { |
| | | increment_layer(&vf, 1); |
| | | increment_layer(&vi, 1); |
| | | increment_layer(&vo, 1); |
| | | } |
| | | |
| | | increment_layer(&wf, 1); |
| | | increment_layer(&wi, 1); |
| | | increment_layer(&wg, 1); |
| | | increment_layer(&wo, 1); |
| | | |
| | | increment_layer(&uf, 1); |
| | | increment_layer(&ui, 1); |
| | | increment_layer(&ug, 1); |
| | | increment_layer(&uo, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_conv_lstm_layer(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer vf = *(l.vf); |
| | | layer vi = *(l.vi); |
| | | layer vo = *(l.vo); |
| | | |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | if (l.peephole) { |
| | | increment_layer(&vf, l.steps - 1); |
| | | increment_layer(&vi, l.steps - 1); |
| | | increment_layer(&vo, l.steps - 1); |
| | | } |
| | | |
| | | increment_layer(&wf, l.steps - 1); |
| | | increment_layer(&wi, l.steps - 1); |
| | | increment_layer(&wg, l.steps - 1); |
| | | increment_layer(&wo, l.steps - 1); |
| | | |
| | | increment_layer(&uf, l.steps - 1); |
| | | increment_layer(&ui, l.steps - 1); |
| | | increment_layer(&ug, l.steps - 1); |
| | | increment_layer(&uo, l.steps - 1); |
| | | |
| | | state.input += l.inputs*l.batch*(l.steps - 1); |
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); |
| | | |
| | | l.output += l.outputs*l.batch*(l.steps - 1); |
| | | l.cell_cpu += l.outputs*l.batch*(l.steps - 1); |
| | | l.delta += l.outputs*l.batch*(l.steps - 1); |
| | | |
| | | for (i = l.steps - 1; i >= 0; --i) { |
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1); |
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1); |
| | | |
| | | l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch; |
| | | |
| | | // f = wf + uf + vf |
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); |
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vf.output, 1, l.f_cpu, 1); |
| | | |
| | | // i = wi + ui + vi |
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); |
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vi.output, 1, l.i_cpu, 1); |
| | | |
| | | // g = wg + ug |
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); |
| | | |
| | | // o = wo + uo + vo |
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); |
| | | if (l.peephole) axpy_cpu(l.outputs*l.batch, 1, vo.output, 1, l.o_cpu, 1); |
| | | |
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH); |
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); |
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1); |
| | | |
| | | gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu); |
| | | axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1); |
| | | // temp = tanh(c) |
| | | // temp2 = delta * o * grad_tanh(tanh(c)) |
| | | // temp3 = delta |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); |
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH); |
| | | mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); |
| | | // delta for o(w,u,v): temp = delta * tanh(c) * grad_logistic(o) |
| | | // delta for c,f,i,g(w,u,v): temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???) |
| | | // delta for output: temp3 = delta |
| | | |
| | | // o |
| | | // delta for O(w,u,v): temp = delta * tanh(c) * grad_logistic(o) |
| | | if (l.peephole) { |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, vo.delta, 1); |
| | | s.input = l.cell_cpu; |
| | | //s.delta = l.dc_cpu; |
| | | backward_convolutional_layer(vo, s); |
| | | } |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | //s.delta = l.dh_cpu; |
| | | backward_convolutional_layer(wo, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_convolutional_layer(uo, s); |
| | | |
| | | // g |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu); |
| | | // delta for c,f,i,g(w,u,v): temp2 = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * g * grad_logistic(i) |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | //s.delta = l.dh_cpu; |
| | | backward_convolutional_layer(wg, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_convolutional_layer(ug, s); |
| | | |
| | | // i |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); |
| | | // delta for c,f,i,g(w,u,v): temp2 = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * g * grad_logistic(i) |
| | | |
| | | if (l.peephole) { |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, vi.delta, 1); |
| | | s.input = l.prev_cell_cpu; |
| | | //s.delta = l.dc_cpu; |
| | | backward_convolutional_layer(vi, s); |
| | | } |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | //s.delta = l.dh_cpu; |
| | | backward_convolutional_layer(wi, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_convolutional_layer(ui, s); |
| | | |
| | | // f |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); |
| | | // delta for c,f,i,g(w,u,v): temp2 = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * c * grad_logistic(f) |
| | | |
| | | if (l.peephole) { |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, vf.delta, 1); |
| | | s.input = l.prev_cell_cpu; |
| | | //s.delta = l.dc_cpu; |
| | | backward_convolutional_layer(vf, s); |
| | | } |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | //s.delta = l.dh_cpu; |
| | | backward_convolutional_layer(wf, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_convolutional_layer(uf, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1); |
| | | |
| | | state.input -= l.inputs*l.batch; |
| | | if (state.delta) state.delta -= l.inputs*l.batch; |
| | | l.output -= l.outputs*l.batch; |
| | | l.cell_cpu -= l.outputs*l.batch; |
| | | l.delta -= l.outputs*l.batch; |
| | | |
| | | if (l.peephole) { |
| | | increment_layer(&vf, -1); |
| | | increment_layer(&vi, -1); |
| | | increment_layer(&vo, -1); |
| | | } |
| | | |
| | | increment_layer(&wf, -1); |
| | | increment_layer(&wi, -1); |
| | | increment_layer(&wg, -1); |
| | | increment_layer(&wo, -1); |
| | | |
| | | increment_layer(&uf, -1); |
| | | increment_layer(&ui, -1); |
| | | increment_layer(&ug, -1); |
| | | increment_layer(&uo, -1); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void pull_conv_lstm_layer(layer l) |
| | | { |
| | | if (l.peephole) { |
| | | pull_convolutional_layer(*(l.vf)); |
| | | pull_convolutional_layer(*(l.vi)); |
| | | pull_convolutional_layer(*(l.vo)); |
| | | } |
| | | pull_convolutional_layer(*(l.wf)); |
| | | if (!l.bottleneck) { |
| | | pull_convolutional_layer(*(l.wi)); |
| | | pull_convolutional_layer(*(l.wg)); |
| | | pull_convolutional_layer(*(l.wo)); |
| | | } |
| | | pull_convolutional_layer(*(l.uf)); |
| | | pull_convolutional_layer(*(l.ui)); |
| | | pull_convolutional_layer(*(l.ug)); |
| | | pull_convolutional_layer(*(l.uo)); |
| | | } |
| | | |
| | | void push_conv_lstm_layer(layer l) |
| | | { |
| | | if (l.peephole) { |
| | | push_convolutional_layer(*(l.vf)); |
| | | push_convolutional_layer(*(l.vi)); |
| | | push_convolutional_layer(*(l.vo)); |
| | | } |
| | | push_convolutional_layer(*(l.wf)); |
| | | if (!l.bottleneck) { |
| | | push_convolutional_layer(*(l.wi)); |
| | | push_convolutional_layer(*(l.wg)); |
| | | push_convolutional_layer(*(l.wo)); |
| | | } |
| | | push_convolutional_layer(*(l.uf)); |
| | | push_convolutional_layer(*(l.ui)); |
| | | push_convolutional_layer(*(l.ug)); |
| | | push_convolutional_layer(*(l.uo)); |
| | | } |
| | | |
| | | void update_conv_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) |
| | | { |
| | | if (l.peephole) { |
| | | update_convolutional_layer_gpu(*(l.vf), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.vi), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.vo), batch, learning_rate, momentum, decay, loss_scale); |
| | | } |
| | | update_convolutional_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale); |
| | | if (!l.bottleneck) { |
| | | update_convolutional_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale); |
| | | } |
| | | update_convolutional_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale); |
| | | } |
| | | |
| | | void forward_conv_lstm_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) |
| | | int i; |
| | | layer vf = *(l.vf); |
| | | layer vi = *(l.vi); |
| | | layer vo = *(l.vo); |
| | | |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | if (state.train) { |
| | | if (l.peephole) { |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, vf.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, vi.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, vo.delta_gpu, 1); |
| | | } |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1); |
| | | if (!l.bottleneck) { |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1); |
| | | } |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1); |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) |
| | | { |
| | | if (l.peephole) { |
| | | assert(l.outputs == vf.out_w * vf.out_h * vf.out_c); |
| | | s.input = l.c_gpu; |
| | | forward_convolutional_layer_gpu(vf, s); |
| | | forward_convolutional_layer_gpu(vi, s); |
| | | // vo below |
| | | } |
| | | |
| | | if (l.bottleneck) { |
| | | // l.bottelneck_hi_gpu size is 2x |
| | | simple_copy_ongpu(l.outputs*l.batch, l.h_gpu, l.bottelneck_hi_gpu); |
| | | simple_copy_ongpu(l.outputs*l.batch, state.input, l.bottelneck_hi_gpu + l.outputs*l.batch); |
| | | s.input = l.bottelneck_hi_gpu; |
| | | forward_convolutional_layer_gpu(wf, s); // 2x input channels |
| | | activate_array_ongpu(wf.output_gpu, l.outputs*l.batch, l.lstm_activation); |
| | | s.input = wf.output_gpu; |
| | | } |
| | | else { |
| | | assert(l.outputs == wf.out_w * wf.out_h * wf.out_c); |
| | | assert(wf.c == l.out_c && wi.c == l.out_c && wg.c == l.out_c && wo.c == l.out_c); |
| | | |
| | | s.input = l.h_gpu; |
| | | forward_convolutional_layer_gpu(wf, s); |
| | | forward_convolutional_layer_gpu(wi, s); |
| | | forward_convolutional_layer_gpu(wg, s); |
| | | forward_convolutional_layer_gpu(wo, s); |
| | | |
| | | s.input = state.input; |
| | | } |
| | | |
| | | assert(l.inputs == uf.w * uf.h * uf.c); |
| | | assert(uf.c == l.c && ui.c == l.c && ug.c == l.c && uo.c == l.c); |
| | | |
| | | forward_convolutional_layer_gpu(uf, s); |
| | | forward_convolutional_layer_gpu(ui, s); |
| | | forward_convolutional_layer_gpu(ug, s); |
| | | forward_convolutional_layer_gpu(uo, s); |
| | | |
| | | // f = wf + uf + vf |
| | | add_3_arrays_activate((l.bottleneck)?NULL:wf.output_gpu, uf.output_gpu, (l.peephole)?vf.output_gpu:NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); |
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vf.output_gpu, 1, l.f_gpu, 1); |
| | | //activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | // i = wi + ui + vi |
| | | add_3_arrays_activate((l.bottleneck)?NULL:wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); |
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vi.output_gpu, 1, l.i_gpu, 1); |
| | | //activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | // g = wg + ug |
| | | add_3_arrays_activate((l.bottleneck)?NULL:wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, l.lstm_activation, l.g_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); |
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); |
| | | |
| | | // c = f*c + i*g |
| | | sum_of_mults(l.f_gpu, l.c_gpu, l.i_gpu, l.g_gpu, l.outputs*l.batch, l.c_gpu); // decreases mAP??? |
| | | //copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); |
| | | //mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); |
| | | //mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1); |
| | | |
| | | // o = wo + uo + vo(c_new) |
| | | if (l.peephole) { |
| | | s.input = l.c_gpu; |
| | | forward_convolutional_layer_gpu(vo, s); |
| | | } |
| | | add_3_arrays_activate((l.bottleneck)?NULL:wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); |
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vo.output_gpu, 1, l.o_gpu, 1); |
| | | //activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | // h = o * tanh(c) |
| | | activate_and_mult(l.c_gpu, l.o_gpu, l.outputs*l.batch, l.lstm_activation, l.h_gpu); |
| | | //simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.h_gpu); |
| | | //activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); |
| | | //mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1); |
| | | |
| | | fix_nan_and_inf(l.c_gpu, l.outputs*l.batch); // should be fix_nan_and_inf() |
| | | fix_nan_and_inf(l.h_gpu, l.outputs*l.batch); // should be fix_nan_and_inf() |
| | | if (l.state_constrain) constrain_ongpu(l.outputs*l.batch, l.state_constrain, l.c_gpu, 1); |
| | | |
| | | if(state.train) simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.cell_gpu); |
| | | simple_copy_ongpu(l.outputs*l.batch, l.h_gpu, l.output_gpu); // is required for both Detection and Training |
| | | |
| | | if (l.shortcut) { |
| | | // partial residual connection |
| | | if (l.bottleneck) axpy_ongpu(l.outputs*l.batch/2, 1, wf.output_gpu, 1, l.output_gpu, 1); |
| | | //else axpy_ongpu(l.outputs*l.batch, 1, l.f_gpu, 1, l.output_gpu, 1); |
| | | } |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | l.output_gpu += l.outputs*l.batch; |
| | | l.cell_gpu += l.outputs*l.batch; |
| | | |
| | | if (l.peephole) { |
| | | increment_layer(&vf, 1); |
| | | increment_layer(&vi, 1); |
| | | increment_layer(&vo, 1); |
| | | } |
| | | |
| | | increment_layer(&wf, 1); |
| | | increment_layer(&wi, 1); |
| | | increment_layer(&wg, 1); |
| | | increment_layer(&wo, 1); |
| | | |
| | | increment_layer(&uf, 1); |
| | | increment_layer(&ui, 1); |
| | | increment_layer(&ug, 1); |
| | | increment_layer(&uo, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_conv_lstm_layer_gpu(layer l, network_state state) |
| | | { |
| | | float *last_output = l.output_gpu + l.outputs*l.batch*(l.steps - 1); |
| | | float *last_cell = l.cell_gpu + l.outputs*l.batch*(l.steps - 1); |
| | | |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | int i; |
| | | layer vf = *(l.vf); |
| | | layer vi = *(l.vi); |
| | | layer vo = *(l.vo); |
| | | |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | if (l.peephole) { |
| | | increment_layer(&vf, l.steps - 1); |
| | | increment_layer(&vi, l.steps - 1); |
| | | increment_layer(&vo, l.steps - 1); |
| | | } |
| | | |
| | | increment_layer(&wf, l.steps - 1); |
| | | increment_layer(&wi, l.steps - 1); |
| | | increment_layer(&wg, l.steps - 1); |
| | | increment_layer(&wo, l.steps - 1); |
| | | |
| | | increment_layer(&uf, l.steps - 1); |
| | | increment_layer(&ui, l.steps - 1); |
| | | increment_layer(&ug, l.steps - 1); |
| | | increment_layer(&uo, l.steps - 1); |
| | | |
| | | state.input += l.inputs*l.batch*(l.steps - 1); |
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); |
| | | |
| | | l.output_gpu += l.outputs*l.batch*(l.steps - 1); |
| | | l.cell_gpu += l.outputs*l.batch*(l.steps - 1); |
| | | l.delta_gpu += l.outputs*l.batch*(l.steps - 1); |
| | | |
| | | //fill_ongpu(l.outputs * l.batch, 0, l.dc_gpu, 1); // dont use |
| | | const int sequence = get_sequence_value(state.net); |
| | | |
| | | for (i = l.steps - 1; i >= 0; --i) { |
| | | if (i != 0) simple_copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, l.prev_cell_gpu); |
| | | //else fill_ongpu(l.outputs * l.batch, 0, l.prev_cell_gpu, 1); // dont use |
| | | else if (state.net.current_subdivision % sequence != 0) simple_copy_ongpu(l.outputs*l.batch, l.last_prev_cell_gpu, l.prev_cell_gpu); |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.cell_gpu, l.c_gpu); |
| | | |
| | | if (i != 0) simple_copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, l.prev_state_gpu); |
| | | //else fill_ongpu(l.outputs * l.batch, 0, l.prev_state_gpu, 1); // dont use |
| | | else if (state.net.current_subdivision % sequence != 0) simple_copy_ongpu(l.outputs*l.batch, l.last_prev_state_gpu, l.prev_state_gpu); |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.h_gpu); |
| | | |
| | | l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; |
| | | |
| | | // f = wf + uf + vf |
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wf.output_gpu, uf.output_gpu, (l.peephole) ? vf.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); |
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vf.output_gpu, 1, l.f_gpu, 1); |
| | | //activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | // i = wi + ui + vi |
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); |
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vi.output_gpu, 1, l.i_gpu, 1); |
| | | //activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | // g = wg + ug |
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, l.lstm_activation, l.g_gpu); // TANH |
| | | //copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); |
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, l.lstm_activation); |
| | | |
| | | // o = wo + uo + vo |
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); |
| | | //axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); |
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vo.output_gpu, 1, l.o_gpu, 1); |
| | | //activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, l.temp3_gpu); // temp3 = delta |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.temp_gpu); |
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, l.lstm_activation); // temp = tanh(c) |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp3_gpu, l.temp2_gpu); |
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); // temp2 = delta * o |
| | | |
| | | gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, l.lstm_activation, l.temp2_gpu); // temp2 = delta * o * grad_tanh(tanh(c)) |
| | | //??? |
| | | axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); // temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???) |
| | | // temp = tanh(c) |
| | | // temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???) |
| | | // temp3 = delta |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.temp_gpu); |
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, l.lstm_activation); // temp = tanh(c) |
| | | |
| | | mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); // temp = delta * tanh(c) |
| | | gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); // temp = delta * tanh(c) * grad_logistic(o) |
| | | // delta for o(w,u,v): temp = delta * tanh(c) * grad_logistic(o) |
| | | // delta for c,f,i,g(w,u,v): temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???) |
| | | // delta for output: temp3 = delta |
| | | |
| | | // o |
| | | // delta for O(w,u,v): temp = delta * tanh(c) * grad_logistic(o) |
| | | if (l.peephole) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, vo.delta_gpu); |
| | | s.input = l.cell_gpu; |
| | | //s.delta = l.dc_gpu; |
| | | backward_convolutional_layer_gpu(vo, s); |
| | | } |
| | | |
| | | if (!l.bottleneck) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wo.delta_gpu); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; |
| | | fill_ongpu(l.outputs * l.batch, 0, l.temp3_gpu, 1); |
| | | backward_convolutional_layer_gpu(wo, s); |
| | | } |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, uo.delta_gpu); |
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | } |
| | | backward_convolutional_layer_gpu(uo, s); |
| | | |
| | | // g |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu); |
| | | mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, l.lstm_activation, l.temp_gpu); |
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * i * grad_tanh(g) |
| | | |
| | | if (!l.bottleneck) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wg.delta_gpu); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; // comment this |
| | | backward_convolutional_layer_gpu(wg, s); // lead to nan |
| | | } |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, ug.delta_gpu); |
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | } |
| | | backward_convolutional_layer_gpu(ug, s); |
| | | |
| | | // i |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu); |
| | | mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); |
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * g * grad_logistic(i) |
| | | |
| | | if (l.peephole) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, vi.delta_gpu); |
| | | s.input = l.prev_cell_gpu; |
| | | //s.delta = l.dc_gpu; |
| | | backward_convolutional_layer_gpu(vi, s); |
| | | } |
| | | |
| | | if (!l.bottleneck) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wi.delta_gpu); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; // comment this |
| | | backward_convolutional_layer_gpu(wi, s); // lead to nan (after 1000 it) |
| | | } |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, ui.delta_gpu); |
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | } |
| | | backward_convolutional_layer_gpu(ui, s); |
| | | |
| | | // f |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu); |
| | | mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); |
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * c * grad_logistic(f) |
| | | |
| | | if (l.peephole) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, vf.delta_gpu); |
| | | s.input = l.prev_cell_gpu; |
| | | //s.delta = l.dc_gpu; |
| | | backward_convolutional_layer_gpu(vf, s); |
| | | } |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, uf.delta_gpu); |
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | } |
| | | backward_convolutional_layer_gpu(uf, s); |
| | | |
| | | |
| | | if (l.bottleneck) { |
| | | // l.bottelneck_hi_gpu size is 2x |
| | | simple_copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, l.bottelneck_hi_gpu); |
| | | simple_copy_ongpu(l.outputs*l.batch, state.input, l.bottelneck_hi_gpu + l.outputs*l.batch); |
| | | fill_ongpu(l.outputs * l.batch * 2, 0, l.bottelneck_delta_gpu, 1); |
| | | s.input = l.bottelneck_hi_gpu; |
| | | s.delta = l.bottelneck_delta_gpu; |
| | | if (l.shortcut) axpy_ongpu(l.outputs*l.batch/2, 1, l.delta_gpu, 1, wf.delta_gpu, 1); // partial residual connection |
| | | gradient_array_ongpu(wf.output_gpu, l.outputs*l.batch, l.lstm_activation, wf.delta_gpu); |
| | | |
| | | reset_nan_and_inf(wf.delta_gpu, l.outputs*l.batch); |
| | | constrain_ongpu(l.outputs*l.batch, 1, wf.delta_gpu, 1); |
| | | } |
| | | else { |
| | | s.input = l.prev_state_gpu; |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wf.delta_gpu); |
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; |
| | | } |
| | | |
| | | // WF |
| | | backward_convolutional_layer_gpu(wf, s); |
| | | |
| | | if (l.bottleneck) { |
| | | reset_nan_and_inf(l.bottelneck_delta_gpu, l.outputs*l.batch*2); |
| | | //constrain_ongpu(l.outputs*l.batch*2, 1, l.bottelneck_delta_gpu, 1); |
| | | if (l.dh_gpu) axpy_ongpu(l.outputs*l.batch, l.time_normalizer, l.bottelneck_delta_gpu, 1, l.dh_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, l.bottelneck_delta_gpu + l.outputs*l.batch, 1, state.delta, 1); // lead to nan |
| | | } |
| | | else { |
| | | axpy_ongpu(l.outputs*l.batch, l.time_normalizer, l.temp3_gpu, 1, l.dh_gpu, 1); |
| | | } |
| | | |
| | | // c |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu); |
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1); |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, l.dc_gpu); |
| | | reset_nan_and_inf(l.dc_gpu, l.outputs*l.batch); |
| | | if (i != 0) reset_nan_and_inf(l.dh_gpu, l.outputs*l.batch); |
| | | // delta for c,f,i,g(w,u,v): delta_c = temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * f // (grad_linear(c)==1) |
| | | |
| | | state.input -= l.inputs*l.batch; |
| | | if (state.delta) state.delta -= l.inputs*l.batch; // new delta: state.delta = prev_layer.delta_gpu; |
| | | l.output_gpu -= l.outputs*l.batch; |
| | | l.cell_gpu -= l.outputs*l.batch; |
| | | l.delta_gpu -= l.outputs*l.batch; |
| | | |
| | | if (l.peephole) { |
| | | increment_layer(&vf, -1); |
| | | increment_layer(&vi, -1); |
| | | increment_layer(&vo, -1); |
| | | } |
| | | |
| | | increment_layer(&wf, -1); |
| | | increment_layer(&wi, -1); |
| | | increment_layer(&wg, -1); |
| | | increment_layer(&wo, -1); |
| | | |
| | | increment_layer(&uf, -1); |
| | | increment_layer(&ui, -1); |
| | | increment_layer(&ug, -1); |
| | | increment_layer(&uo, -1); |
| | | } |
| | | |
| | | simple_copy_ongpu(l.outputs*l.batch, last_output, l.last_prev_state_gpu); |
| | | simple_copy_ongpu(l.outputs*l.batch, last_cell, l.last_prev_cell_gpu); |
| | | |
| | | // free state after each 100 iterations |
| | | //if (get_current_batch(state.net) % 100) free_state_conv_lstm(l); // dont use |
| | | } |
| | | #endif |