| | |
| | | }
|
| | |
|
| | |
|
| | | layer make_conv_lstm_layer(int batch, int h, int w, int c, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int peephole, int xnor, int train)
|
| | | layer make_conv_lstm_layer(int batch, int h, int w, int c, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int peephole, int xnor, int bottleneck, int train) |
| | | {
|
| | | fprintf(stderr, "CONV_LSTM Layer: %d x %d x %d image, %d filters\n", h, w, c, output_filters);
|
| | | /*
|
| | |
| | | l.train = train;
|
| | | l.batch = batch;
|
| | | l.type = CONV_LSTM;
|
| | | l.bottleneck = bottleneck; |
| | | l.steps = steps;
|
| | | l.size = size;
|
| | | l.stride = stride;
|
| | |
| | | l.uo->batch = batch;
|
| | | if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size;
|
| | |
|
| | |
|
| | | if (l.bottleneck) { |
| | | // bottleneck-conv with 2x channels |
| | | l.wf = (layer*)xcalloc(1, sizeof(layer)); |
| | | l.wi = (layer*)xcalloc(1, sizeof(layer)); |
| | | l.wg = (layer*)xcalloc(1, sizeof(layer)); |
| | | l.wo = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.wf) = make_convolutional_layer(batch, steps, h, w, output_filters*2, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.wf->batch = batch; |
| | | if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; |
| | | } |
| | | else { |
| | | // W
|
| | | l.wf = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.wf) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | |
| | | *(l.wo) = make_convolutional_layer(batch, steps, h, w, output_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.wo->batch = batch;
|
| | | if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size;
|
| | |
|
| | | } |
| | |
|
| | | // V
|
| | | l.vf = (layer*)xcalloc(1, sizeof(layer));
|
| | |
| | |
|
| | | l.batch_normalize = batch_normalize;
|
| | |
|
| | | l.out_h = l.wo->out_h;
|
| | | l.out_w = l.wo->out_w;
|
| | | l.outputs = l.wo->outputs;
|
| | | l.out_h = l.uo->out_h; |
| | | l.out_w = l.uo->out_w; |
| | | l.outputs = l.uo->outputs; |
| | | int outputs = l.outputs;
|
| | | l.inputs = w*h*c;
|
| | |
|
| | | assert(l.wo->outputs == l.uo->outputs);
|
| | | if (!l.bottleneck) assert(l.wo->outputs == l.uo->outputs); |
| | | assert(l.wf->outputs == l.uf->outputs); |
| | |
|
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
|
| | | //l.state = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | |
| | | l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | |
|
| | | /* |
| | | { |
| | | int k; |
| | | for (k = 0; k < l.uf->n; ++k) { |
| | | l.uf->biases[k] = 2; // ~0.9 |
| | | l.ui->biases[k] = -22; // ~0.1 |
| | | l.uo->biases[k] = 5; // ~1.0 |
| | | } |
| | | #ifdef GPU |
| | | cuda_push_array(l.uf->biases_gpu, l.uf->biases, l.n); |
| | | cuda_push_array(l.ui->biases_gpu, l.ui->biases, l.n); |
| | | cuda_push_array(l.uo->biases_gpu, l.uo->biases, l.n); |
| | | #endif// GPU |
| | | } |
| | | */ |
| | | |
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_conv_lstm_layer_gpu;
|
| | | l.backward_gpu = backward_conv_lstm_layer_gpu;
|
| | |
| | | l.g_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.o_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.c_gpu = cuda_make_array(0, batch*outputs);
|
| | | if (l.bottleneck) { |
| | | l.bottelneck_hi_gpu = cuda_make_array(0, batch*outputs * 2); |
| | | l.bottelneck_delta_gpu = cuda_make_array(0, batch*outputs * 2); |
| | | } |
| | | l.h_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.stored_c_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.stored_h_gpu = cuda_make_array(0, batch*outputs);
|
| | |
| | | l.dh_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.last_prev_state_gpu = cuda_make_array(0, l.batch*l.outputs);
|
| | | l.last_prev_cell_gpu = cuda_make_array(0, l.batch*l.outputs);
|
| | |
|
| | | #endif
|
| | |
|
| | | l.bflops = l.uf->bflops + l.ui->bflops + l.ug->bflops + l.uo->bflops +
|
| | |
| | |
|
| | | return l;
|
| | | }
|
| | | |
| | | layer make_history_layer(int batch, int h, int w, int c, int history_size, int steps, int train) |
| | | { |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.train = train; |
| | | l.batch = batch; |
| | | l.type = HISTORY; |
| | | l.steps = steps; |
| | | l.history_size = history_size; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.out_h = h; |
| | | l.out_w = w; |
| | | l.out_c = c * history_size; |
| | | l.inputs = h * w * c; |
| | | l.outputs = h * w * c * history_size; |
| | | |
| | | l.forward = forward_history_layer; |
| | | l.backward = backward_history_layer; |
| | | |
| | | fprintf(stderr, "HISTORY b = %d, s = %2d, steps = %2d %4d x%4d x%4d -> %4d x%4d x%4d \n", l.batch / l.steps, l.history_size, l.steps, w, h, c, l.out_w, l.out_h, l.out_c); |
| | | |
| | | l.output = (float*)xcalloc(l.batch * l.outputs, sizeof(float)); |
| | | l.delta = (float*)xcalloc(l.batch * l.outputs, sizeof(float)); |
| | | |
| | | l.prev_state_cpu = (float*)xcalloc(l.batch*l.outputs, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | |
| | | l.forward_gpu = forward_history_layer_gpu; |
| | | l.backward_gpu = backward_history_layer_gpu; |
| | | |
| | | l.output_gpu = cuda_make_array(0, l.batch * l.outputs); |
| | | l.delta_gpu = cuda_make_array(0, l.batch * l.outputs); |
| | | |
| | | l.prev_state_gpu = cuda_make_array(0, l.batch*l.outputs); |
| | | |
| | | #endif // GPU |
| | | |
| | | //l.batch = 4; |
| | | //l.steps = 1; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void forward_history_layer(layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | copy_cpu(l.inputs*l.batch, state.input, 1, l.output, 1); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | float *prev_output = l.prev_state_cpu; |
| | | |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | // shift cell |
| | | int shift_size = l.inputs * (l.history_size - 1); |
| | | int output_sift = l.inputs; |
| | | |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *input = state.input + input_start; |
| | | float *output = l.output + output_start; |
| | | |
| | | copy_cpu(shift_size, prev_output + b*l.outputs, 1, output + output_sift, 1); |
| | | |
| | | copy_cpu(l.inputs, input, 1, output, 1); |
| | | } |
| | | prev_output = l.output + i*l.outputs*batch; |
| | | } |
| | | |
| | | int output_start = (l.steps-1)*l.outputs*batch; |
| | | copy_cpu(batch*l.outputs, l.output + output_start, 1, l.prev_state_cpu, 1); |
| | | } |
| | | |
| | | void backward_history_layer(layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, state.delta, 1); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | // l.delta -> state.delta |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *state_delta = state.delta + input_start; |
| | | float *l_delta = l.delta + output_start; |
| | | |
| | | //copy_cpu(l.inputs, l_delta, 1, state_delta, 1); |
| | | axpy_cpu(l.inputs, 1, l_delta, 1, state_delta, 1); |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_history_layer_gpu(const layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | simple_copy_ongpu(l.inputs*l.batch, state.input, l.output_gpu); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | //int copy_size = l.inputs*batch*l.steps; |
| | | //printf(" copy_size = %d, inputs = %d, batch = %d, steps = %d, l.history_size = %d \n", copy_size, l.inputs, batch, l.steps, l.history_size); |
| | | //simple_copy_ongpu(copy_size, state.input, l.output_gpu); |
| | | //return; |
| | | |
| | | //fill_ongpu(batch*l.outputs, 0, l.prev_state_gpu, 1); |
| | | float *prev_output = l.prev_state_gpu; |
| | | |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | // shift cell |
| | | int shift_size = l.inputs * (l.history_size - 1); |
| | | int output_sift = l.inputs; |
| | | |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | //printf(" hist-fw: i = %d, b = %d \n", i, b); |
| | | |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *input = state.input + input_start; |
| | | float *output = l.output_gpu + output_start; |
| | | |
| | | //copy_cpu(shift_size, prev_output + b*l.outputs, 1, output + output_sift, 1); |
| | | simple_copy_ongpu(shift_size, prev_output + b*l.outputs, output + output_sift); |
| | | |
| | | //copy_cpu(l.inputs, input, 1, output, 1); |
| | | simple_copy_ongpu(l.inputs, input, output); |
| | | |
| | | int h; |
| | | for (h = 1; h < l.history_size; ++h) { |
| | | //scal_ongpu(l.inputs, (l.history_size - h)/ (float)l.history_size, output + h*l.inputs, 1); |
| | | //scal_ongpu(l.inputs, 0, output + h*l.inputs, 1); |
| | | } |
| | | } |
| | | prev_output = l.output_gpu + i*l.outputs*batch; |
| | | } |
| | | |
| | | int output_start = (l.steps - 1)*l.outputs*batch; |
| | | //copy_cpu(batch*l.outputs, l.output + output_start, 1, l.prev_state_cpu, 1); |
| | | simple_copy_ongpu(batch*l.outputs, l.output_gpu + output_start, l.prev_state_gpu); |
| | | } |
| | | |
| | | void backward_history_layer_gpu(const layer l, network_state state) |
| | | { |
| | | if (l.steps == 1) { |
| | | axpy_ongpu(l.inputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1); |
| | | return; |
| | | } |
| | | |
| | | const int batch = l.batch / l.steps; |
| | | |
| | | //int copy_size = l.inputs*batch*l.steps; |
| | | //printf(" copy_size = %d, inputs = %d, batch = %d, steps = %d, l.history_size = %d \n", copy_size, l.inputs, batch, l.steps, l.history_size); |
| | | //axpy_ongpu(copy_size, 1, l.delta_gpu, 1, state.delta, 1); |
| | | //return; |
| | | |
| | | // l.delta -> state.delta |
| | | int i; |
| | | for (i = 0; i < l.steps; ++i) { |
| | | int b; |
| | | for (b = 0; b < batch; ++b) { |
| | | //printf(" hist-bw: i = %d, b = %d \n", i, b); |
| | | |
| | | int input_start = b*l.inputs + i*l.inputs*batch; |
| | | int output_start = b*l.outputs + i*l.outputs*batch; |
| | | float *state_delta = state.delta + input_start; |
| | | float *l_delta = l.delta_gpu + output_start; |
| | | |
| | | //copy_cpu(l.inputs, l_delta, 1, state_delta, 1); |
| | | axpy_ongpu(l.inputs, 1, l_delta, 1, state_delta, 1); |
| | | } |
| | | } |
| | | } |
| | | #endif |
| | | |
| | |
|
| | | void update_conv_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
| | | {
|
| | |
| | | pull_convolutional_layer(*(l.vo));
|
| | | }
|
| | | pull_convolutional_layer(*(l.wf));
|
| | | if (!l.bottleneck) { |
| | | pull_convolutional_layer(*(l.wi));
|
| | | pull_convolutional_layer(*(l.wg));
|
| | | pull_convolutional_layer(*(l.wo));
|
| | | } |
| | | pull_convolutional_layer(*(l.uf));
|
| | | pull_convolutional_layer(*(l.ui));
|
| | | pull_convolutional_layer(*(l.ug));
|
| | |
| | | push_convolutional_layer(*(l.vo));
|
| | | }
|
| | | push_convolutional_layer(*(l.wf));
|
| | | if (!l.bottleneck) { |
| | | push_convolutional_layer(*(l.wi));
|
| | | push_convolutional_layer(*(l.wg));
|
| | | push_convolutional_layer(*(l.wo));
|
| | | } |
| | | push_convolutional_layer(*(l.uf));
|
| | | push_convolutional_layer(*(l.ui));
|
| | | push_convolutional_layer(*(l.ug));
|
| | |
| | | update_convolutional_layer_gpu(*(l.vo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | }
|
| | | update_convolutional_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | if (!l.bottleneck) { |
| | | update_convolutional_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | } |
| | | update_convolutional_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale);
|
| | |
| | | }
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1);
|
| | | if (!l.bottleneck) { |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1);
|
| | | } |
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1);
|
| | |
| | | // vo below
|
| | | }
|
| | |
|
| | | if (l.bottleneck) { |
| | | // l.bottelneck_hi_gpu size is 2x |
| | | simple_copy_ongpu(l.outputs*l.batch, l.h_gpu, l.bottelneck_hi_gpu); |
| | | simple_copy_ongpu(l.outputs*l.batch, state.input, l.bottelneck_hi_gpu + l.outputs*l.batch); |
| | | s.input = l.bottelneck_hi_gpu; |
| | | forward_convolutional_layer_gpu(wf, s); // 2x input channels |
| | | activate_array_ongpu(wf.output_gpu, l.outputs*l.batch, l.lstm_activation); |
| | | s.input = wf.output_gpu; |
| | | } |
| | | else { |
| | | assert(l.outputs == wf.out_w * wf.out_h * wf.out_c);
|
| | | assert(wf.c == l.out_c && wi.c == l.out_c && wg.c == l.out_c && wo.c == l.out_c);
|
| | |
|
| | |
| | | forward_convolutional_layer_gpu(wg, s);
|
| | | forward_convolutional_layer_gpu(wo, s);
|
| | |
|
| | | s.input = state.input; |
| | | } |
| | | |
| | | assert(l.inputs == uf.w * uf.h * uf.c);
|
| | | assert(uf.c == l.c && ui.c == l.c && ug.c == l.c && uo.c == l.c);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_convolutional_layer_gpu(uf, s);
|
| | | forward_convolutional_layer_gpu(ui, s);
|
| | | forward_convolutional_layer_gpu(ug, s);
|
| | | forward_convolutional_layer_gpu(uo, s);
|
| | |
|
| | | // f = wf + uf + vf
|
| | | add_3_arrays_activate(wf.output_gpu, uf.output_gpu, (l.peephole)?vf.output_gpu:NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu);
|
| | | add_3_arrays_activate((l.bottleneck)?NULL:wf.output_gpu, uf.output_gpu, (l.peephole)?vf.output_gpu:NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vf.output_gpu, 1, l.f_gpu, 1);
|
| | | //activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // i = wi + ui + vi
|
| | | add_3_arrays_activate(wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu);
|
| | | add_3_arrays_activate((l.bottleneck)?NULL:wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vi.output_gpu, 1, l.i_gpu, 1);
|
| | | //activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // g = wg + ug
|
| | | add_3_arrays_activate(wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, TANH, l.g_gpu);
|
| | | add_3_arrays_activate((l.bottleneck)?NULL:wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, l.lstm_activation, l.g_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1);
|
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH);
|
| | |
| | | s.input = l.c_gpu;
|
| | | forward_convolutional_layer_gpu(vo, s);
|
| | | }
|
| | | add_3_arrays_activate(wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu);
|
| | | add_3_arrays_activate((l.bottleneck)?NULL:wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vo.output_gpu, 1, l.o_gpu, 1);
|
| | | //activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // h = o * tanh(c)
|
| | | activate_and_mult(l.c_gpu, l.o_gpu, l.outputs*l.batch, TANH, l.h_gpu);
|
| | | activate_and_mult(l.c_gpu, l.o_gpu, l.outputs*l.batch, l.lstm_activation, l.h_gpu); |
| | | //simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.h_gpu);
|
| | | //activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
|
| | | //mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1);
|
| | |
|
| | | fix_nan_and_inf(l.c_gpu, l.outputs*l.batch);
|
| | | fix_nan_and_inf(l.h_gpu, l.outputs*l.batch);
|
| | | fix_nan_and_inf(l.c_gpu, l.outputs*l.batch); // should be fix_nan_and_inf() |
| | | fix_nan_and_inf(l.h_gpu, l.outputs*l.batch); // should be fix_nan_and_inf() |
| | | if (l.state_constrain) constrain_ongpu(l.outputs*l.batch, l.state_constrain, l.c_gpu, 1);
|
| | |
|
| | | if(state.train) simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.cell_gpu);
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.h_gpu, l.output_gpu); // is required for both Detection and Training
|
| | | |
| | | if (l.shortcut) { |
| | | // partial residual connection |
| | | if (l.bottleneck) axpy_ongpu(l.outputs*l.batch/2, 1, wf.output_gpu, 1, l.output_gpu, 1); |
| | | //else axpy_ongpu(l.outputs*l.batch, 1, l.f_gpu, 1, l.output_gpu, 1); |
| | | } |
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output_gpu += l.outputs*l.batch;
|
| | |
| | | l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
|
| | |
|
| | | // f = wf + uf + vf
|
| | | add_3_arrays_activate(wf.output_gpu, uf.output_gpu, (l.peephole) ? vf.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu);
|
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wf.output_gpu, uf.output_gpu, (l.peephole) ? vf.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.f_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vf.output_gpu, 1, l.f_gpu, 1);
|
| | | //activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // i = wi + ui + vi
|
| | | add_3_arrays_activate(wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu);
|
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wi.output_gpu, ui.output_gpu, (l.peephole) ? vi.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.i_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vi.output_gpu, 1, l.i_gpu, 1);
|
| | | //activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | // g = wg + ug
|
| | | add_3_arrays_activate(wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, TANH, l.g_gpu);
|
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wg.output_gpu, ug.output_gpu, NULL, l.outputs*l.batch, l.lstm_activation, l.g_gpu); // TANH |
| | | //copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1);
|
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH);
|
| | | //activate_array_ongpu(l.g_gpu, l.outputs*l.batch, l.lstm_activation); |
| | |
|
| | | // o = wo + uo + vo
|
| | | add_3_arrays_activate(wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu);
|
| | | add_3_arrays_activate((l.bottleneck) ? NULL : wo.output_gpu, uo.output_gpu, (l.peephole) ? vo.output_gpu : NULL, l.outputs*l.batch, LOGISTIC, l.o_gpu); |
| | | //copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1);
|
| | | //axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1);
|
| | | //if (l.peephole) axpy_ongpu(l.outputs*l.batch, 1, vo.output_gpu, 1, l.o_gpu, 1);
|
| | |
| | | simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, l.temp3_gpu); // temp3 = delta
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.temp_gpu);
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); // temp = tanh(c)
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, l.lstm_activation); // temp = tanh(c) |
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp3_gpu, l.temp2_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); // temp2 = delta * o
|
| | |
|
| | | gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu); // temp2 = delta * o * grad_tanh(tanh(c))
|
| | | gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, l.lstm_activation, l.temp2_gpu); // temp2 = delta * o * grad_tanh(tanh(c)) |
| | | //???
|
| | | axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); // temp2 = delta * o * grad_tanh(tanh(c)) + delta_c(???)
|
| | | // temp = tanh(c)
|
| | |
| | | // temp3 = delta
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.c_gpu, l.temp_gpu);
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); // temp = tanh(c)
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, l.lstm_activation); // temp = tanh(c) |
| | |
|
| | | mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); // temp = delta * tanh(c)
|
| | | gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); // temp = delta * tanh(c) * grad_logistic(o)
|
| | |
| | | backward_convolutional_layer_gpu(vo, s);
|
| | | }
|
| | |
|
| | | if (!l.bottleneck) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wo.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; |
| | | fill_ongpu(l.outputs * l.batch, 0, l.temp3_gpu, 1); |
| | | backward_convolutional_layer_gpu(wo, s);
|
| | | } |
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, uo.delta_gpu);
|
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | } |
| | | backward_convolutional_layer_gpu(uo, s);
|
| | |
|
| | | // g
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu);
|
| | | gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, l.lstm_activation, l.temp_gpu); |
| | | // delta for c,f,i,g(w,u,v): temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * i * grad_tanh(g)
|
| | |
|
| | | if (!l.bottleneck) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wg.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wg, s);
|
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; // comment this |
| | | backward_convolutional_layer_gpu(wg, s); // lead to nan |
| | | } |
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, ug.delta_gpu);
|
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | } |
| | | backward_convolutional_layer_gpu(ug, s);
|
| | |
|
| | | // i
|
| | |
| | | backward_convolutional_layer_gpu(vi, s);
|
| | | }
|
| | |
|
| | | if (!l.bottleneck) { |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wi.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wi, s);
|
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; // comment this |
| | | backward_convolutional_layer_gpu(wi, s); // lead to nan (after 1000 it) |
| | | } |
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, ui.delta_gpu);
|
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | } |
| | | backward_convolutional_layer_gpu(ui, s);
|
| | |
|
| | | // f
|
| | |
| | | backward_convolutional_layer_gpu(vf, s);
|
| | | }
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wf.delta_gpu);
|
| | | s.input = l.prev_state_gpu;
|
| | | //s.delta = l.dh_gpu;
|
| | | backward_convolutional_layer_gpu(wf, s);
|
| | |
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, uf.delta_gpu);
|
| | | if (l.bottleneck) { |
| | | s.input = wf.output_gpu; |
| | | s.delta = wf.delta_gpu; |
| | | } |
| | | else { |
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | } |
| | | backward_convolutional_layer_gpu(uf, s);
|
| | | |
| | | |
| | | if (l.bottleneck) { |
| | | // l.bottelneck_hi_gpu size is 2x |
| | | simple_copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, l.bottelneck_hi_gpu); |
| | | simple_copy_ongpu(l.outputs*l.batch, state.input, l.bottelneck_hi_gpu + l.outputs*l.batch); |
| | | fill_ongpu(l.outputs * l.batch * 2, 0, l.bottelneck_delta_gpu, 1); |
| | | s.input = l.bottelneck_hi_gpu; |
| | | s.delta = l.bottelneck_delta_gpu; |
| | | if (l.shortcut) axpy_ongpu(l.outputs*l.batch/2, 1, l.delta_gpu, 1, wf.delta_gpu, 1); // partial residual connection |
| | | gradient_array_ongpu(wf.output_gpu, l.outputs*l.batch, l.lstm_activation, wf.delta_gpu); |
| | | |
| | | reset_nan_and_inf(wf.delta_gpu, l.outputs*l.batch); |
| | | constrain_ongpu(l.outputs*l.batch, 1, wf.delta_gpu, 1); |
| | | } |
| | | else { |
| | | s.input = l.prev_state_gpu; |
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, wf.delta_gpu); |
| | | s.delta = l.temp3_gpu;// s.delta = l.dh_gpu; |
| | | } |
| | | |
| | | // WF |
| | | backward_convolutional_layer_gpu(wf, s); |
| | | |
| | | if (l.bottleneck) { |
| | | reset_nan_and_inf(l.bottelneck_delta_gpu, l.outputs*l.batch*2); |
| | | //constrain_ongpu(l.outputs*l.batch*2, 1, l.bottelneck_delta_gpu, 1); |
| | | if (l.dh_gpu) axpy_ongpu(l.outputs*l.batch, l.time_normalizer, l.bottelneck_delta_gpu, 1, l.dh_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, l.bottelneck_delta_gpu + l.outputs*l.batch, 1, state.delta, 1); // lead to nan |
| | | } |
| | | else { |
| | | axpy_ongpu(l.outputs*l.batch, l.time_normalizer, l.temp3_gpu, 1, l.dh_gpu, 1); |
| | | } |
| | |
|
| | | // c
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp2_gpu, l.temp_gpu);
|
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1);
|
| | | simple_copy_ongpu(l.outputs*l.batch, l.temp_gpu, l.dc_gpu);
|
| | | fix_nan_and_inf(l.dc_gpu, l.outputs*l.batch);
|
| | | reset_nan_and_inf(l.dc_gpu, l.outputs*l.batch); |
| | | if (i != 0) reset_nan_and_inf(l.dh_gpu, l.outputs*l.batch); |
| | | // delta for c,f,i,g(w,u,v): delta_c = temp = (delta * o * grad_tanh(tanh(c)) + delta_c(???)) * f // (grad_linear(c)==1)
|
| | |
|
| | | state.input -= l.inputs*l.batch;
|