| | |
| | | #ifndef CONVOLUTIONAL_LAYER_H
|
| | | #define CONVOLUTIONAL_LAYER_H
|
| | |
|
| | | #include "dark_cuda.h"
|
| | | #include "image.h"
|
| | | #include "activations.h"
|
| | | #include "layer.h"
|
| | | #include "network.h"
|
| | |
|
| | | typedef layer convolutional_layer;
|
| | |
|
| | | #ifdef __cplusplus
|
| | | extern "C" {
|
| | | #endif
|
| | | #ifdef GPU
|
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
|
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
|
| | | void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay, float loss_scale);
|
| | |
|
| | | void push_convolutional_layer(convolutional_layer layer);
|
| | | void pull_convolutional_layer(convolutional_layer layer);
|
| | |
|
| | | void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
| | | void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
|
| | | #ifdef CUDNN
|
| | | void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify);
|
| | | void create_convolutional_cudnn_tensors(layer *l);
|
| | | void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16);
|
| | | #endif
|
| | | #endif
|
| | | void free_convolutional_batchnorm(convolutional_layer *l);
|
| | |
|
| | | size_t get_convolutional_workspace_size(layer l);
|
| | | convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train);
|
| | | void denormalize_convolutional_layer(convolutional_layer l);
|
| | | void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit);
|
| | | void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
|
| | | void forward_convolutional_layer(const convolutional_layer layer, network_state state);
|
| | | void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
|
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights);
|
| | | void binarize_weights(float *weights, int n, int size, float *binary);
|
| | | void swap_binary(convolutional_layer *l);
|
| | | void binarize_weights2(float *weights, int n, int size, char *binary, float *scales);
|
| | |
|
| | | void binary_align_weights(convolutional_layer *l);
|
| | |
|
| | | void backward_convolutional_layer(convolutional_layer layer, network_state state);
|
| | |
|
| | | void add_bias(float *output, float *biases, int batch, int n, int size);
|
| | | void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
|
| | |
|
| | | image get_convolutional_image(convolutional_layer layer);
|
| | | image get_convolutional_delta(convolutional_layer layer);
|
| | | image get_convolutional_weight(convolutional_layer layer, int i);
|
| | |
|
| | |
|
| | | int convolutional_out_height(convolutional_layer layer);
|
| | | int convolutional_out_width(convolutional_layer layer);
|
| | | void rescale_weights(convolutional_layer l, float scale, float trans);
|
| | | void rgbgr_weights(convolutional_layer l);
|
| | | void assisted_excitation_forward(convolutional_layer l, network_state state);
|
| | | void assisted_excitation_forward_gpu(convolutional_layer l, network_state state);
|
| | |
|
| | | #ifdef __cplusplus
|
| | | }
|
| | | #endif
|
| | |
|
| | | #endif
|
| | | #ifndef CONVOLUTIONAL_LAYER_H |
| | | #define CONVOLUTIONAL_LAYER_H |
| | | |
| | | #include "dark_cuda.h" |
| | | #include "image.h" |
| | | #include "activations.h" |
| | | #include "layer.h" |
| | | #include "network.h" |
| | | |
| | | typedef layer convolutional_layer; |
| | | |
| | | #ifdef __cplusplus |
| | | extern "C" { |
| | | #endif |
| | | #ifdef GPU |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state); |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state); |
| | | void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay, float loss_scale); |
| | | |
| | | void push_convolutional_layer(convolutional_layer layer); |
| | | void pull_convolutional_layer(convolutional_layer layer); |
| | | |
| | | void add_bias_gpu(float *output, float *biases, int batch, int n, int size); |
| | | void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); |
| | | #ifdef CUDNN |
| | | void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify); |
| | | void create_convolutional_cudnn_tensors(layer *l); |
| | | void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16); |
| | | #endif |
| | | #endif |
| | | void free_convolutional_batchnorm(convolutional_layer *l); |
| | | |
| | | size_t get_convolutional_workspace_size(layer l); |
| | | convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train); |
| | | void denormalize_convolutional_layer(convolutional_layer l); |
| | | void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit); |
| | | void resize_convolutional_layer(convolutional_layer *layer, int w, int h); |
| | | void forward_convolutional_layer(const convolutional_layer layer, network_state state); |
| | | void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay); |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights); |
| | | void binarize_weights(float *weights, int n, int size, float *binary); |
| | | void swap_binary(convolutional_layer *l); |
| | | void binarize_weights2(float *weights, int n, int size, char *binary, float *scales); |
| | | |
| | | void binary_align_weights(convolutional_layer *l); |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, network_state state); |
| | | |
| | | void add_bias(float *output, float *biases, int batch, int n, int size); |
| | | void backward_bias(float *bias_updates, float *delta, int batch, int n, int size); |
| | | |
| | | image get_convolutional_image(convolutional_layer layer); |
| | | image get_convolutional_delta(convolutional_layer layer); |
| | | image get_convolutional_weight(convolutional_layer layer, int i); |
| | | |
| | | |
| | | int convolutional_out_height(convolutional_layer layer); |
| | | int convolutional_out_width(convolutional_layer layer); |
| | | void rescale_weights(convolutional_layer l, float scale, float trans); |
| | | void rgbgr_weights(convolutional_layer l); |
| | | void assisted_excitation_forward(convolutional_layer l, network_state state); |
| | | void assisted_excitation_forward_gpu(convolutional_layer l, network_state state); |
| | | |
| | | #ifdef __cplusplus |
| | | } |
| | | #endif |
| | | |
| | | #endif |