| | |
| | | #include "cost_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include <math.h>
|
| | | #include <string.h>
|
| | | #include <stdlib.h>
|
| | | #include <stdio.h>
|
| | |
|
| | | COST_TYPE get_cost_type(char *s)
|
| | | {
|
| | | if (strcmp(s, "sse")==0) return SSE;
|
| | | if (strcmp(s, "masked")==0) return MASKED;
|
| | | if (strcmp(s, "smooth")==0) return SMOOTH;
|
| | | fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
|
| | | return SSE;
|
| | | }
|
| | |
|
| | | char *get_cost_string(COST_TYPE a)
|
| | | {
|
| | | switch(a){
|
| | | case SSE:
|
| | | return "sse";
|
| | | case MASKED:
|
| | | return "masked";
|
| | | case SMOOTH:
|
| | | return "smooth";
|
| | | default:
|
| | | return "sse";
|
| | | }
|
| | | }
|
| | |
|
| | | cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale)
|
| | | {
|
| | | fprintf(stderr, "cost %4d\n", inputs);
|
| | | cost_layer l = { (LAYER_TYPE)0 };
|
| | | l.type = COST;
|
| | |
|
| | | l.scale = scale;
|
| | | l.batch = batch;
|
| | | l.inputs = inputs;
|
| | | l.outputs = inputs;
|
| | | l.cost_type = cost_type;
|
| | | l.delta = (float*)xcalloc(inputs * batch, sizeof(float));
|
| | | l.output = (float*)xcalloc(inputs * batch, sizeof(float));
|
| | | l.cost = (float*)xcalloc(1, sizeof(float));
|
| | |
|
| | | l.forward = forward_cost_layer;
|
| | | l.backward = backward_cost_layer;
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_cost_layer_gpu;
|
| | | l.backward_gpu = backward_cost_layer_gpu;
|
| | |
|
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
|
| | | l.output_gpu = cuda_make_array(l.output, inputs*batch);
|
| | | #endif
|
| | | return l;
|
| | | }
|
| | |
|
| | | void resize_cost_layer(cost_layer *l, int inputs)
|
| | | {
|
| | | l->inputs = inputs;
|
| | | l->outputs = inputs;
|
| | | l->delta = (float*)xrealloc(l->delta, inputs * l->batch * sizeof(float));
|
| | | l->output = (float*)xrealloc(l->output, inputs * l->batch * sizeof(float));
|
| | | #ifdef GPU
|
| | | cuda_free(l->delta_gpu);
|
| | | cuda_free(l->output_gpu);
|
| | | l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch);
|
| | | l->output_gpu = cuda_make_array(l->output, inputs*l->batch);
|
| | | #endif
|
| | | }
|
| | |
|
| | | void forward_cost_layer(cost_layer l, network_state state)
|
| | | {
|
| | | if (!state.truth) return;
|
| | | if(l.cost_type == MASKED){
|
| | | int i;
|
| | | for(i = 0; i < l.batch*l.inputs; ++i){
|
| | | if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
|
| | | }
|
| | | }
|
| | | if(l.cost_type == SMOOTH){
|
| | | smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
|
| | | } else {
|
| | | l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output);
|
| | | }
|
| | | l.cost[0] = sum_array(l.output, l.batch*l.inputs);
|
| | | }
|
| | |
|
| | | void backward_cost_layer(const cost_layer l, network_state state)
|
| | | {
|
| | | axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1);
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | void pull_cost_layer(cost_layer l)
|
| | | {
|
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
| | | }
|
| | |
|
| | | void push_cost_layer(cost_layer l)
|
| | | {
|
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
| | | }
|
| | |
|
| | | int float_abs_compare (const void * a, const void * b)
|
| | | {
|
| | | float fa = *(const float*) a;
|
| | | if(fa < 0) fa = -fa;
|
| | | float fb = *(const float*) b;
|
| | | if(fb < 0) fb = -fb;
|
| | | return (fa > fb) - (fa < fb);
|
| | | }
|
| | |
|
| | | void forward_cost_layer_gpu(cost_layer l, network_state state)
|
| | | {
|
| | | if (!state.truth) return;
|
| | | if (l.cost_type == MASKED) {
|
| | | mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
|
| | | }
|
| | |
|
| | | if(l.cost_type == SMOOTH){
|
| | | smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
|
| | | } else {
|
| | | l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu);
|
| | | }
|
| | |
|
| | | if(l.ratio){
|
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
| | | qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare);
|
| | | int n = (1-l.ratio) * l.batch*l.inputs;
|
| | | float thresh = l.delta[n];
|
| | | thresh = 0;
|
| | | printf("%f\n", thresh);
|
| | | supp_ongpu(l.batch*l.inputs, thresh, l.delta_gpu, 1);
|
| | | }
|
| | |
|
| | | cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs);
|
| | | l.cost[0] = sum_array(l.output, l.batch*l.inputs);
|
| | | }
|
| | |
|
| | | void backward_cost_layer_gpu(const cost_layer l, network_state state)
|
| | | {
|
| | | axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1);
|
| | | }
|
| | | #endif
|
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include <math.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | COST_TYPE get_cost_type(char *s) |
| | | { |
| | | if (strcmp(s, "sse")==0) return SSE; |
| | | if (strcmp(s, "masked")==0) return MASKED; |
| | | if (strcmp(s, "smooth")==0) return SMOOTH; |
| | | fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s); |
| | | return SSE; |
| | | } |
| | | |
| | | char *get_cost_string(COST_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case SSE: |
| | | return "sse"; |
| | | case MASKED: |
| | | return "masked"; |
| | | case SMOOTH: |
| | | return "smooth"; |
| | | default: |
| | | return "sse"; |
| | | } |
| | | } |
| | | |
| | | cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale) |
| | | { |
| | | fprintf(stderr, "cost %4d\n", inputs); |
| | | cost_layer l = { (LAYER_TYPE)0 }; |
| | | l.type = COST; |
| | | |
| | | l.scale = scale; |
| | | l.batch = batch; |
| | | l.inputs = inputs; |
| | | l.outputs = inputs; |
| | | l.cost_type = cost_type; |
| | | l.delta = (float*)xcalloc(inputs * batch, sizeof(float)); |
| | | l.output = (float*)xcalloc(inputs * batch, sizeof(float)); |
| | | l.cost = (float*)xcalloc(1, sizeof(float)); |
| | | |
| | | l.forward = forward_cost_layer; |
| | | l.backward = backward_cost_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_cost_layer_gpu; |
| | | l.backward_gpu = backward_cost_layer_gpu; |
| | | |
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch); |
| | | l.output_gpu = cuda_make_array(l.output, inputs*batch); |
| | | #endif |
| | | return l; |
| | | } |
| | | |
| | | void resize_cost_layer(cost_layer *l, int inputs) |
| | | { |
| | | l->inputs = inputs; |
| | | l->outputs = inputs; |
| | | l->delta = (float*)xrealloc(l->delta, inputs * l->batch * sizeof(float)); |
| | | l->output = (float*)xrealloc(l->output, inputs * l->batch * sizeof(float)); |
| | | #ifdef GPU |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch); |
| | | l->output_gpu = cuda_make_array(l->output, inputs*l->batch); |
| | | #endif |
| | | } |
| | | |
| | | void forward_cost_layer(cost_layer l, network_state state) |
| | | { |
| | | if (!state.truth) return; |
| | | if(l.cost_type == MASKED){ |
| | | int i; |
| | | for(i = 0; i < l.batch*l.inputs; ++i){ |
| | | if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM; |
| | | } |
| | | } |
| | | if(l.cost_type == SMOOTH){ |
| | | smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output); |
| | | } else { |
| | | l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output); |
| | | } |
| | | l.cost[0] = sum_array(l.output, l.batch*l.inputs); |
| | | } |
| | | |
| | | void backward_cost_layer(const cost_layer l, network_state state) |
| | | { |
| | | axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_cost_layer(cost_layer l) |
| | | { |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
| | | } |
| | | |
| | | void push_cost_layer(cost_layer l) |
| | | { |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
| | | } |
| | | |
| | | int float_abs_compare (const void * a, const void * b) |
| | | { |
| | | float fa = *(const float*) a; |
| | | if(fa < 0) fa = -fa; |
| | | float fb = *(const float*) b; |
| | | if(fb < 0) fb = -fb; |
| | | return (fa > fb) - (fa < fb); |
| | | } |
| | | |
| | | void forward_cost_layer_gpu(cost_layer l, network_state state) |
| | | { |
| | | if (!state.truth) return; |
| | | if (l.cost_type == MASKED) { |
| | | mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth); |
| | | } |
| | | |
| | | if(l.cost_type == SMOOTH){ |
| | | smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu); |
| | | } else { |
| | | l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu); |
| | | } |
| | | |
| | | if(l.ratio){ |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
| | | qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare); |
| | | int n = (1-l.ratio) * l.batch*l.inputs; |
| | | float thresh = l.delta[n]; |
| | | thresh = 0; |
| | | printf("%f\n", thresh); |
| | | supp_ongpu(l.batch*l.inputs, thresh, l.delta_gpu, 1); |
| | | } |
| | | |
| | | cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs); |
| | | l.cost[0] = sum_array(l.output, l.batch*l.inputs); |
| | | } |
| | | |
| | | void backward_cost_layer_gpu(const cost_layer l, network_state state) |
| | | { |
| | | axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | #endif |