| | |
| | | #include "crnn_layer.h"
|
| | | #include "convolutional_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include "gemm.h"
|
| | |
|
| | | #include <math.h>
|
| | | #include <stdio.h>
|
| | | #include <stdlib.h>
|
| | | #include <string.h>
|
| | |
|
| | | static void increment_layer(layer *l, int steps)
|
| | | {
|
| | | int num = l->outputs*l->batch*steps;
|
| | | l->output += num;
|
| | | l->delta += num;
|
| | | l->x += num;
|
| | | l->x_norm += num;
|
| | |
|
| | | #ifdef GPU
|
| | | l->output_gpu += num;
|
| | | l->delta_gpu += num;
|
| | | l->x_gpu += num;
|
| | | l->x_norm_gpu += num;
|
| | | #endif
|
| | | }
|
| | |
|
| | | layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int xnor, int train)
|
| | | {
|
| | | fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters);
|
| | | batch = batch / steps;
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.train = train;
|
| | | l.batch = batch;
|
| | | l.type = CRNN;
|
| | | l.steps = steps;
|
| | | l.size = size;
|
| | | l.stride = stride;
|
| | | l.dilation = dilation;
|
| | | l.pad = pad;
|
| | | l.h = h;
|
| | | l.w = w;
|
| | | l.c = c;
|
| | | l.groups = groups;
|
| | | l.out_c = output_filters;
|
| | | l.inputs = h * w * c;
|
| | | l.hidden = h * w * hidden_filters;
|
| | | l.xnor = xnor;
|
| | |
|
| | | l.state = (float*)xcalloc(l.hidden * l.batch * (l.steps + 1), sizeof(float));
|
| | |
|
| | | l.input_layer = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.input_layer->batch = batch;
|
| | | if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size;
|
| | |
|
| | | l.self_layer = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.self_layer->batch = batch;
|
| | | if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size;
|
| | |
|
| | | l.output_layer = (layer*)xcalloc(1, sizeof(layer));
|
| | | *(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train);
|
| | | l.output_layer->batch = batch;
|
| | | if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size;
|
| | |
|
| | | l.out_h = l.output_layer->out_h;
|
| | | l.out_w = l.output_layer->out_w;
|
| | | l.outputs = l.output_layer->outputs;
|
| | |
|
| | | assert(l.input_layer->outputs == l.self_layer->outputs);
|
| | | assert(l.input_layer->outputs == l.output_layer->inputs);
|
| | |
|
| | | l.output = l.output_layer->output;
|
| | | l.delta = l.output_layer->delta;
|
| | |
|
| | | l.forward = forward_crnn_layer;
|
| | | l.backward = backward_crnn_layer;
|
| | | l.update = update_crnn_layer;
|
| | |
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_crnn_layer_gpu;
|
| | | l.backward_gpu = backward_crnn_layer_gpu;
|
| | | l.update_gpu = update_crnn_layer_gpu;
|
| | | l.state_gpu = cuda_make_array(l.state, l.batch*l.hidden*(l.steps + 1));
|
| | | l.output_gpu = l.output_layer->output_gpu;
|
| | | l.delta_gpu = l.output_layer->delta_gpu;
|
| | | #endif
|
| | |
|
| | | l.bflops = l.input_layer->bflops + l.self_layer->bflops + l.output_layer->bflops;
|
| | |
|
| | | return l;
|
| | | }
|
| | |
|
| | | void resize_crnn_layer(layer *l, int w, int h)
|
| | | {
|
| | | resize_convolutional_layer(l->input_layer, w, h);
|
| | | if (l->workspace_size < l->input_layer->workspace_size) l->workspace_size = l->input_layer->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->self_layer, w, h);
|
| | | if (l->workspace_size < l->self_layer->workspace_size) l->workspace_size = l->self_layer->workspace_size;
|
| | |
|
| | | resize_convolutional_layer(l->output_layer, w, h);
|
| | | if (l->workspace_size < l->output_layer->workspace_size) l->workspace_size = l->output_layer->workspace_size;
|
| | |
|
| | | l->output = l->output_layer->output;
|
| | | l->delta = l->output_layer->delta;
|
| | |
|
| | | int hidden_filters = l->self_layer->c;
|
| | | l->w = w;
|
| | | l->h = h;
|
| | | l->inputs = h * w * l->c;
|
| | | l->hidden = h * w * hidden_filters;
|
| | |
|
| | | l->out_h = l->output_layer->out_h;
|
| | | l->out_w = l->output_layer->out_w;
|
| | | l->outputs = l->output_layer->outputs;
|
| | |
|
| | | assert(l->input_layer->inputs == l->inputs);
|
| | | assert(l->self_layer->inputs == l->hidden);
|
| | | assert(l->input_layer->outputs == l->self_layer->outputs);
|
| | | assert(l->input_layer->outputs == l->output_layer->inputs);
|
| | |
|
| | | l->state = (float*)xrealloc(l->state, l->batch*l->hidden*(l->steps + 1)*sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | if (l->state_gpu) cudaFree(l->state_gpu);
|
| | | l->state_gpu = cuda_make_array(l->state, l->batch*l->hidden*(l->steps + 1));
|
| | |
|
| | | l->output_gpu = l->output_layer->output_gpu;
|
| | | l->delta_gpu = l->output_layer->delta_gpu;
|
| | | #endif
|
| | | }
|
| | |
|
| | | void free_state_crnn(layer l)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.self_layer->output[i] = rand_uniform(-1, 1);
|
| | |
|
| | | #ifdef GPU
|
| | | cuda_push_array(l.self_layer->output_gpu, l.self_layer->output, l.outputs * l.batch);
|
| | | #endif // GPU
|
| | | }
|
| | |
|
| | | void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
| | | {
|
| | | update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
|
| | | update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
|
| | | }
|
| | |
|
| | | void forward_crnn_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | //s.index = state.index;
|
| | | int i;
|
| | | layer input_layer = *(l.input_layer);
|
| | | layer self_layer = *(l.self_layer);
|
| | | layer output_layer = *(l.output_layer);
|
| | |
|
| | | if (state.train) {
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
|
| | | fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
|
| | | fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
|
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i) {
|
| | | s.input = state.input;
|
| | | forward_convolutional_layer(input_layer, s);
|
| | |
|
| | | s.input = l.state;
|
| | | forward_convolutional_layer(self_layer, s);
|
| | |
|
| | | float *old_state = l.state;
|
| | | if(state.train) l.state += l.hidden*l.batch;
|
| | | if(l.shortcut){
|
| | | copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1);
|
| | | }else{
|
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1);
|
| | | }
|
| | | axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1);
|
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
|
| | |
|
| | | s.input = l.state;
|
| | | forward_convolutional_layer(output_layer, s);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | increment_layer(&input_layer, 1);
|
| | | increment_layer(&self_layer, 1);
|
| | | increment_layer(&output_layer, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_crnn_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | //s.index = state.index;
|
| | | int i;
|
| | | layer input_layer = *(l.input_layer);
|
| | | layer self_layer = *(l.self_layer);
|
| | | layer output_layer = *(l.output_layer);
|
| | |
|
| | | increment_layer(&input_layer, l.steps-1);
|
| | | increment_layer(&self_layer, l.steps-1);
|
| | | increment_layer(&output_layer, l.steps-1);
|
| | |
|
| | | l.state += l.hidden*l.batch*l.steps;
|
| | | for (i = l.steps-1; i >= 0; --i) {
|
| | | copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
|
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
|
| | |
|
| | | s.input = l.state;
|
| | | s.delta = self_layer.delta;
|
| | | backward_convolutional_layer(output_layer, s);
|
| | |
|
| | | l.state -= l.hidden*l.batch;
|
| | | /*
|
| | | if(i > 0){
|
| | | copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
|
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
|
| | | }else{
|
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1);
|
| | | }
|
| | | */
|
| | |
|
| | | s.input = l.state;
|
| | | s.delta = self_layer.delta - l.hidden*l.batch;
|
| | | if (i == 0) s.delta = 0;
|
| | | backward_convolutional_layer(self_layer, s);
|
| | |
|
| | | copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
|
| | | if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1);
|
| | | s.input = state.input + i*l.inputs*l.batch;
|
| | | if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
|
| | | else s.delta = 0;
|
| | | backward_convolutional_layer(input_layer, s);
|
| | |
|
| | | increment_layer(&input_layer, -1);
|
| | | increment_layer(&self_layer, -1);
|
| | | increment_layer(&output_layer, -1);
|
| | | }
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | void pull_crnn_layer(layer l)
|
| | | {
|
| | | pull_convolutional_layer(*(l.input_layer));
|
| | | pull_convolutional_layer(*(l.self_layer));
|
| | | pull_convolutional_layer(*(l.output_layer));
|
| | | }
|
| | |
|
| | | void push_crnn_layer(layer l)
|
| | | {
|
| | | push_convolutional_layer(*(l.input_layer));
|
| | | push_convolutional_layer(*(l.self_layer));
|
| | | push_convolutional_layer(*(l.output_layer));
|
| | | }
|
| | |
|
| | | void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
|
| | | {
|
| | | update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | }
|
| | |
|
| | | void forward_crnn_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | if(!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() )
|
| | | int i;
|
| | | layer input_layer = *(l.input_layer);
|
| | | layer self_layer = *(l.self_layer);
|
| | | layer output_layer = *(l.output_layer);
|
| | |
|
| | | /*
|
| | | #ifdef CUDNN_HALF // slow and bad for training
|
| | | if (!state.train && state.net.cudnn_half) {
|
| | | s.index = state.index;
|
| | | cuda_convert_f32_to_f16(input_layer.weights_gpu, input_layer.c*input_layer.n*input_layer.size*input_layer.size, input_layer.weights_gpu16);
|
| | | cuda_convert_f32_to_f16(self_layer.weights_gpu, self_layer.c*self_layer.n*self_layer.size*self_layer.size, self_layer.weights_gpu16);
|
| | | cuda_convert_f32_to_f16(output_layer.weights_gpu, output_layer.c*output_layer.n*output_layer.size*output_layer.size, output_layer.weights_gpu16);
|
| | | }
|
| | | #endif //CUDNN_HALF
|
| | | */
|
| | |
|
| | | if (state.train) {
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i) {
|
| | | s.input = state.input;
|
| | | forward_convolutional_layer_gpu(input_layer, s);
|
| | |
|
| | | s.input = l.state_gpu;
|
| | | forward_convolutional_layer_gpu(self_layer, s);
|
| | |
|
| | | float *old_state = l.state_gpu;
|
| | | if(state.train) l.state_gpu += l.hidden*l.batch;
|
| | | if(l.shortcut){
|
| | | copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1);
|
| | | }else{
|
| | | fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
|
| | | }
|
| | | axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1);
|
| | | axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
|
| | |
|
| | | s.input = l.state_gpu;
|
| | | forward_convolutional_layer_gpu(output_layer, s);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | increment_layer(&input_layer, 1);
|
| | | increment_layer(&self_layer, 1);
|
| | | increment_layer(&output_layer, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_crnn_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | s.net = state.net;
|
| | | //s.index = state.index;
|
| | | int i;
|
| | | layer input_layer = *(l.input_layer);
|
| | | layer self_layer = *(l.self_layer);
|
| | | layer output_layer = *(l.output_layer);
|
| | | increment_layer(&input_layer, l.steps - 1);
|
| | | increment_layer(&self_layer, l.steps - 1);
|
| | | increment_layer(&output_layer, l.steps - 1);
|
| | | float *init_state_gpu = l.state_gpu;
|
| | | l.state_gpu += l.hidden*l.batch*l.steps;
|
| | | for (i = l.steps-1; i >= 0; --i) {
|
| | | //copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN
|
| | | //axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN
|
| | |
|
| | | s.input = l.state_gpu;
|
| | | s.delta = self_layer.delta_gpu;
|
| | | backward_convolutional_layer_gpu(output_layer, s);
|
| | |
|
| | | l.state_gpu -= l.hidden*l.batch;
|
| | |
|
| | | copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
|
| | |
|
| | | s.input = l.state_gpu;
|
| | | s.delta = self_layer.delta_gpu - l.hidden*l.batch;
|
| | | if (i == 0) s.delta = 0;
|
| | | backward_convolutional_layer_gpu(self_layer, s);
|
| | |
|
| | | if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1);
|
| | | s.input = state.input + i*l.inputs*l.batch;
|
| | | if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
|
| | | else s.delta = 0;
|
| | | backward_convolutional_layer_gpu(input_layer, s);
|
| | |
|
| | | if (state.net.try_fix_nan) {
|
| | | fix_nan_and_inf(output_layer.delta_gpu, output_layer.inputs * output_layer.batch);
|
| | | fix_nan_and_inf(self_layer.delta_gpu, self_layer.inputs * self_layer.batch);
|
| | | fix_nan_and_inf(input_layer.delta_gpu, input_layer.inputs * input_layer.batch);
|
| | | }
|
| | |
|
| | | increment_layer(&input_layer, -1);
|
| | | increment_layer(&self_layer, -1);
|
| | | increment_layer(&output_layer, -1);
|
| | | }
|
| | | fill_ongpu(l.hidden * l.batch, 0, init_state_gpu, 1); //clean l.state_gpu
|
| | | }
|
| | | #endif
|
| | | #include "crnn_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | static void increment_layer(layer *l, int steps) |
| | | { |
| | | int num = l->outputs*l->batch*steps; |
| | | l->output += num; |
| | | l->delta += num; |
| | | l->x += num; |
| | | l->x_norm += num; |
| | | |
| | | #ifdef GPU |
| | | l->output_gpu += num; |
| | | l->delta_gpu += num; |
| | | l->x_gpu += num; |
| | | l->x_norm_gpu += num; |
| | | #endif |
| | | } |
| | | |
| | | layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int output_filters, int groups, int steps, int size, int stride, int dilation, int pad, ACTIVATION activation, int batch_normalize, int xnor, int train) |
| | | { |
| | | fprintf(stderr, "CRNN Layer: %d x %d x %d image, %d filters\n", h,w,c,output_filters); |
| | | batch = batch / steps; |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.train = train; |
| | | l.batch = batch; |
| | | l.type = CRNN; |
| | | l.steps = steps; |
| | | l.size = size; |
| | | l.stride = stride; |
| | | l.dilation = dilation; |
| | | l.pad = pad; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.groups = groups; |
| | | l.out_c = output_filters; |
| | | l.inputs = h * w * c; |
| | | l.hidden = h * w * hidden_filters; |
| | | l.xnor = xnor; |
| | | |
| | | l.state = (float*)xcalloc(l.hidden * l.batch * (l.steps + 1), sizeof(float)); |
| | | |
| | | l.input_layer = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.input_layer) = make_convolutional_layer(batch, steps, h, w, c, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.input_layer->batch = batch; |
| | | if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size; |
| | | |
| | | l.self_layer = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.self_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, hidden_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.self_layer->batch = batch; |
| | | if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size; |
| | | |
| | | l.output_layer = (layer*)xcalloc(1, sizeof(layer)); |
| | | *(l.output_layer) = make_convolutional_layer(batch, steps, h, w, hidden_filters, output_filters, groups, size, stride, stride, dilation, pad, activation, batch_normalize, 0, xnor, 0, 0, 0, 0, NULL, 0, 0, train); |
| | | l.output_layer->batch = batch; |
| | | if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size; |
| | | |
| | | l.out_h = l.output_layer->out_h; |
| | | l.out_w = l.output_layer->out_w; |
| | | l.outputs = l.output_layer->outputs; |
| | | |
| | | assert(l.input_layer->outputs == l.self_layer->outputs); |
| | | assert(l.input_layer->outputs == l.output_layer->inputs); |
| | | |
| | | l.output = l.output_layer->output; |
| | | l.delta = l.output_layer->delta; |
| | | |
| | | l.forward = forward_crnn_layer; |
| | | l.backward = backward_crnn_layer; |
| | | l.update = update_crnn_layer; |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_crnn_layer_gpu; |
| | | l.backward_gpu = backward_crnn_layer_gpu; |
| | | l.update_gpu = update_crnn_layer_gpu; |
| | | l.state_gpu = cuda_make_array(l.state, l.batch*l.hidden*(l.steps + 1)); |
| | | l.output_gpu = l.output_layer->output_gpu; |
| | | l.delta_gpu = l.output_layer->delta_gpu; |
| | | #endif |
| | | |
| | | l.bflops = l.input_layer->bflops + l.self_layer->bflops + l.output_layer->bflops; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void resize_crnn_layer(layer *l, int w, int h) |
| | | { |
| | | resize_convolutional_layer(l->input_layer, w, h); |
| | | if (l->workspace_size < l->input_layer->workspace_size) l->workspace_size = l->input_layer->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->self_layer, w, h); |
| | | if (l->workspace_size < l->self_layer->workspace_size) l->workspace_size = l->self_layer->workspace_size; |
| | | |
| | | resize_convolutional_layer(l->output_layer, w, h); |
| | | if (l->workspace_size < l->output_layer->workspace_size) l->workspace_size = l->output_layer->workspace_size; |
| | | |
| | | l->output = l->output_layer->output; |
| | | l->delta = l->output_layer->delta; |
| | | |
| | | int hidden_filters = l->self_layer->c; |
| | | l->w = w; |
| | | l->h = h; |
| | | l->inputs = h * w * l->c; |
| | | l->hidden = h * w * hidden_filters; |
| | | |
| | | l->out_h = l->output_layer->out_h; |
| | | l->out_w = l->output_layer->out_w; |
| | | l->outputs = l->output_layer->outputs; |
| | | |
| | | assert(l->input_layer->inputs == l->inputs); |
| | | assert(l->self_layer->inputs == l->hidden); |
| | | assert(l->input_layer->outputs == l->self_layer->outputs); |
| | | assert(l->input_layer->outputs == l->output_layer->inputs); |
| | | |
| | | l->state = (float*)xrealloc(l->state, l->batch*l->hidden*(l->steps + 1)*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | if (l->state_gpu) cudaFree(l->state_gpu); |
| | | l->state_gpu = cuda_make_array(l->state, l->batch*l->hidden*(l->steps + 1)); |
| | | |
| | | l->output_gpu = l->output_layer->output_gpu; |
| | | l->delta_gpu = l->output_layer->delta_gpu; |
| | | #endif |
| | | } |
| | | |
| | | void free_state_crnn(layer l) |
| | | { |
| | | int i; |
| | | for (i = 0; i < l.outputs * l.batch; ++i) l.self_layer->output[i] = rand_uniform(-1, 1); |
| | | |
| | | #ifdef GPU |
| | | cuda_push_array(l.self_layer->output_gpu, l.self_layer->output, l.outputs * l.batch); |
| | | #endif // GPU |
| | | } |
| | | |
| | | void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay); |
| | | update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay); |
| | | } |
| | | |
| | | void forward_crnn_layer(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | //s.index = state.index; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | |
| | | if (state.train) { |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); |
| | | fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); |
| | | fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); |
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = state.input; |
| | | forward_convolutional_layer(input_layer, s); |
| | | |
| | | s.input = l.state; |
| | | forward_convolutional_layer(self_layer, s); |
| | | |
| | | float *old_state = l.state; |
| | | if(state.train) l.state += l.hidden*l.batch; |
| | | if(l.shortcut){ |
| | | copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); |
| | | }else{ |
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
| | | } |
| | | axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); |
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); |
| | | |
| | | s.input = l.state; |
| | | forward_convolutional_layer(output_layer, s); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | increment_layer(&input_layer, 1); |
| | | increment_layer(&self_layer, 1); |
| | | increment_layer(&output_layer, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_crnn_layer(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | //s.index = state.index; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | |
| | | increment_layer(&input_layer, l.steps-1); |
| | | increment_layer(&self_layer, l.steps-1); |
| | | increment_layer(&output_layer, l.steps-1); |
| | | |
| | | l.state += l.hidden*l.batch*l.steps; |
| | | for (i = l.steps-1; i >= 0; --i) { |
| | | copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); |
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); |
| | | |
| | | s.input = l.state; |
| | | s.delta = self_layer.delta; |
| | | backward_convolutional_layer(output_layer, s); |
| | | |
| | | l.state -= l.hidden*l.batch; |
| | | /* |
| | | if(i > 0){ |
| | | copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); |
| | | axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); |
| | | }else{ |
| | | fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
| | | } |
| | | */ |
| | | |
| | | s.input = l.state; |
| | | s.delta = self_layer.delta - l.hidden*l.batch; |
| | | if (i == 0) s.delta = 0; |
| | | backward_convolutional_layer(self_layer, s); |
| | | |
| | | copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); |
| | | if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); |
| | | s.input = state.input + i*l.inputs*l.batch; |
| | | if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; |
| | | else s.delta = 0; |
| | | backward_convolutional_layer(input_layer, s); |
| | | |
| | | increment_layer(&input_layer, -1); |
| | | increment_layer(&self_layer, -1); |
| | | increment_layer(&output_layer, -1); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_crnn_layer(layer l) |
| | | { |
| | | pull_convolutional_layer(*(l.input_layer)); |
| | | pull_convolutional_layer(*(l.self_layer)); |
| | | pull_convolutional_layer(*(l.output_layer)); |
| | | } |
| | | |
| | | void push_crnn_layer(layer l) |
| | | { |
| | | push_convolutional_layer(*(l.input_layer)); |
| | | push_convolutional_layer(*(l.self_layer)); |
| | | push_convolutional_layer(*(l.output_layer)); |
| | | } |
| | | |
| | | void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) |
| | | { |
| | | update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | } |
| | | |
| | | void forward_crnn_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | if(!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() ) |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | |
| | | /* |
| | | #ifdef CUDNN_HALF // slow and bad for training |
| | | if (!state.train && state.net.cudnn_half) { |
| | | s.index = state.index; |
| | | cuda_convert_f32_to_f16(input_layer.weights_gpu, input_layer.c*input_layer.n*input_layer.size*input_layer.size, input_layer.weights_gpu16); |
| | | cuda_convert_f32_to_f16(self_layer.weights_gpu, self_layer.c*self_layer.n*self_layer.size*self_layer.size, self_layer.weights_gpu16); |
| | | cuda_convert_f32_to_f16(output_layer.weights_gpu, output_layer.c*output_layer.n*output_layer.size*output_layer.size, output_layer.weights_gpu16); |
| | | } |
| | | #endif //CUDNN_HALF |
| | | */ |
| | | |
| | | if (state.train) { |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); |
| | | fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); |
| | | fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); |
| | | fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = state.input; |
| | | forward_convolutional_layer_gpu(input_layer, s); |
| | | |
| | | s.input = l.state_gpu; |
| | | forward_convolutional_layer_gpu(self_layer, s); |
| | | |
| | | float *old_state = l.state_gpu; |
| | | if(state.train) l.state_gpu += l.hidden*l.batch; |
| | | if(l.shortcut){ |
| | | copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); |
| | | }else{ |
| | | fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); |
| | | } |
| | | axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); |
| | | axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); |
| | | |
| | | s.input = l.state_gpu; |
| | | forward_convolutional_layer_gpu(output_layer, s); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | increment_layer(&input_layer, 1); |
| | | increment_layer(&self_layer, 1); |
| | | increment_layer(&output_layer, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_crnn_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | s.net = state.net; |
| | | //s.index = state.index; |
| | | int i; |
| | | layer input_layer = *(l.input_layer); |
| | | layer self_layer = *(l.self_layer); |
| | | layer output_layer = *(l.output_layer); |
| | | increment_layer(&input_layer, l.steps - 1); |
| | | increment_layer(&self_layer, l.steps - 1); |
| | | increment_layer(&output_layer, l.steps - 1); |
| | | float *init_state_gpu = l.state_gpu; |
| | | l.state_gpu += l.hidden*l.batch*l.steps; |
| | | for (i = l.steps-1; i >= 0; --i) { |
| | | //copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN |
| | | //axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); // commented in RNN |
| | | |
| | | s.input = l.state_gpu; |
| | | s.delta = self_layer.delta_gpu; |
| | | backward_convolutional_layer_gpu(output_layer, s); |
| | | |
| | | l.state_gpu -= l.hidden*l.batch; |
| | | |
| | | copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); |
| | | |
| | | s.input = l.state_gpu; |
| | | s.delta = self_layer.delta_gpu - l.hidden*l.batch; |
| | | if (i == 0) s.delta = 0; |
| | | backward_convolutional_layer_gpu(self_layer, s); |
| | | |
| | | if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); |
| | | s.input = state.input + i*l.inputs*l.batch; |
| | | if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; |
| | | else s.delta = 0; |
| | | backward_convolutional_layer_gpu(input_layer, s); |
| | | |
| | | if (state.net.try_fix_nan) { |
| | | fix_nan_and_inf(output_layer.delta_gpu, output_layer.inputs * output_layer.batch); |
| | | fix_nan_and_inf(self_layer.delta_gpu, self_layer.inputs * self_layer.batch); |
| | | fix_nan_and_inf(input_layer.delta_gpu, input_layer.inputs * input_layer.batch); |
| | | } |
| | | |
| | | increment_layer(&input_layer, -1); |
| | | increment_layer(&self_layer, -1); |
| | | increment_layer(&output_layer, -1); |
| | | } |
| | | fill_ongpu(l.hidden * l.batch, 0, init_state_gpu, 1); //clean l.state_gpu |
| | | } |
| | | #endif |