| | |
| | | #include "utils.h"
|
| | | #include "crop_layer.h"
|
| | | #include "dark_cuda.h"
|
| | | #include <stdio.h>
|
| | |
|
| | | image get_crop_image(crop_layer l)
|
| | | {
|
| | | int h = l.out_h;
|
| | | int w = l.out_w;
|
| | | int c = l.out_c;
|
| | | return float_to_image(w,h,c,l.output);
|
| | | }
|
| | |
|
| | | void backward_crop_layer(const crop_layer l, network_state state){}
|
| | | void backward_crop_layer_gpu(const crop_layer l, network_state state){}
|
| | |
|
| | | crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
|
| | | {
|
| | | fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
|
| | | crop_layer l = { (LAYER_TYPE)0 };
|
| | | l.type = CROP;
|
| | | l.batch = batch;
|
| | | l.h = h;
|
| | | l.w = w;
|
| | | l.c = c;
|
| | | l.scale = (float)crop_height / h;
|
| | | l.flip = flip;
|
| | | l.angle = angle;
|
| | | l.saturation = saturation;
|
| | | l.exposure = exposure;
|
| | | l.out_w = crop_width;
|
| | | l.out_h = crop_height;
|
| | | l.out_c = c;
|
| | | l.inputs = l.w * l.h * l.c;
|
| | | l.outputs = l.out_w * l.out_h * l.out_c;
|
| | | l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
|
| | | l.forward = forward_crop_layer;
|
| | | l.backward = backward_crop_layer;
|
| | |
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_crop_layer_gpu;
|
| | | l.backward_gpu = backward_crop_layer_gpu;
|
| | | l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
|
| | | l.rand_gpu = cuda_make_array(0, l.batch*8);
|
| | | #endif
|
| | | return l;
|
| | | }
|
| | |
|
| | | void resize_crop_layer(layer *l, int w, int h)
|
| | | {
|
| | | l->w = w;
|
| | | l->h = h;
|
| | |
|
| | | l->out_w = l->scale*w;
|
| | | l->out_h = l->scale*h;
|
| | |
|
| | | l->inputs = l->w * l->h * l->c;
|
| | | l->outputs = l->out_h * l->out_w * l->out_c;
|
| | |
|
| | | l->output = (float*)xrealloc(l->output, l->batch * l->outputs * sizeof(float));
|
| | | #ifdef GPU
|
| | | cuda_free(l->output_gpu);
|
| | | l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
|
| | | #endif
|
| | | }
|
| | |
|
| | |
|
| | | void forward_crop_layer(const crop_layer l, network_state state)
|
| | | {
|
| | | int i,j,c,b,row,col;
|
| | | int index;
|
| | | int count = 0;
|
| | | int flip = (l.flip && rand()%2);
|
| | | int dh = rand()%(l.h - l.out_h + 1);
|
| | | int dw = rand()%(l.w - l.out_w + 1);
|
| | | float scale = 2;
|
| | | float trans = -1;
|
| | | if(l.noadjust){
|
| | | scale = 1;
|
| | | trans = 0;
|
| | | }
|
| | | if(!state.train){
|
| | | flip = 0;
|
| | | dh = (l.h - l.out_h)/2;
|
| | | dw = (l.w - l.out_w)/2;
|
| | | }
|
| | | for(b = 0; b < l.batch; ++b){
|
| | | for(c = 0; c < l.c; ++c){
|
| | | for(i = 0; i < l.out_h; ++i){
|
| | | for(j = 0; j < l.out_w; ++j){
|
| | | if(flip){
|
| | | col = l.w - dw - j - 1;
|
| | | }else{
|
| | | col = j + dw;
|
| | | }
|
| | | row = i + dh;
|
| | | index = col+l.w*(row+l.h*(c + l.c*b));
|
| | | l.output[count++] = state.input[index]*scale + trans;
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | #include "utils.h" |
| | | #include "crop_layer.h" |
| | | #include "dark_cuda.h" |
| | | #include <stdio.h> |
| | | |
| | | image get_crop_image(crop_layer l) |
| | | { |
| | | int h = l.out_h; |
| | | int w = l.out_w; |
| | | int c = l.out_c; |
| | | return float_to_image(w,h,c,l.output); |
| | | } |
| | | |
| | | void backward_crop_layer(const crop_layer l, network_state state){} |
| | | void backward_crop_layer_gpu(const crop_layer l, network_state state){} |
| | | |
| | | crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure) |
| | | { |
| | | fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c); |
| | | crop_layer l = { (LAYER_TYPE)0 }; |
| | | l.type = CROP; |
| | | l.batch = batch; |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.scale = (float)crop_height / h; |
| | | l.flip = flip; |
| | | l.angle = angle; |
| | | l.saturation = saturation; |
| | | l.exposure = exposure; |
| | | l.out_w = crop_width; |
| | | l.out_h = crop_height; |
| | | l.out_c = c; |
| | | l.inputs = l.w * l.h * l.c; |
| | | l.outputs = l.out_w * l.out_h * l.out_c; |
| | | l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
| | | l.forward = forward_crop_layer; |
| | | l.backward = backward_crop_layer; |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_crop_layer_gpu; |
| | | l.backward_gpu = backward_crop_layer_gpu; |
| | | l.output_gpu = cuda_make_array(l.output, l.outputs*batch); |
| | | l.rand_gpu = cuda_make_array(0, l.batch*8); |
| | | #endif |
| | | return l; |
| | | } |
| | | |
| | | void resize_crop_layer(layer *l, int w, int h) |
| | | { |
| | | l->w = w; |
| | | l->h = h; |
| | | |
| | | l->out_w = l->scale*w; |
| | | l->out_h = l->scale*h; |
| | | |
| | | l->inputs = l->w * l->h * l->c; |
| | | l->outputs = l->out_h * l->out_w * l->out_c; |
| | | |
| | | l->output = (float*)xrealloc(l->output, l->batch * l->outputs * sizeof(float)); |
| | | #ifdef GPU |
| | | cuda_free(l->output_gpu); |
| | | l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void forward_crop_layer(const crop_layer l, network_state state) |
| | | { |
| | | int i,j,c,b,row,col; |
| | | int index; |
| | | int count = 0; |
| | | int flip = (l.flip && rand()%2); |
| | | int dh = rand()%(l.h - l.out_h + 1); |
| | | int dw = rand()%(l.w - l.out_w + 1); |
| | | float scale = 2; |
| | | float trans = -1; |
| | | if(l.noadjust){ |
| | | scale = 1; |
| | | trans = 0; |
| | | } |
| | | if(!state.train){ |
| | | flip = 0; |
| | | dh = (l.h - l.out_h)/2; |
| | | dw = (l.w - l.out_w)/2; |
| | | } |
| | | for(b = 0; b < l.batch; ++b){ |
| | | for(c = 0; c < l.c; ++c){ |
| | | for(i = 0; i < l.out_h; ++i){ |
| | | for(j = 0; j < l.out_w; ++j){ |
| | | if(flip){ |
| | | col = l.w - dw - j - 1; |
| | | }else{ |
| | | col = j + dw; |
| | | } |
| | | row = i + dh; |
| | | index = col+l.w*(row+l.h*(c + l.c*b)); |
| | | l.output[count++] = state.input[index]*scale + trans; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |