| | |
| | | #include "darknet.h"
|
| | | #include <time.h>
|
| | | #include <stdlib.h>
|
| | | #include <stdio.h>
|
| | | #if defined(_MSC_VER) && defined(_DEBUG)
|
| | | #include <crtdbg.h>
|
| | | #endif
|
| | |
|
| | | #include "parser.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include "connected_layer.h"
|
| | |
|
| | |
|
| | | extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
|
| | | extern void run_voxel(int argc, char **argv);
|
| | | extern void run_yolo(int argc, char **argv);
|
| | | extern void run_detector(int argc, char **argv);
|
| | | extern void run_coco(int argc, char **argv);
|
| | | extern void run_writing(int argc, char **argv);
|
| | | extern void run_captcha(int argc, char **argv);
|
| | | extern void run_nightmare(int argc, char **argv);
|
| | | extern void run_dice(int argc, char **argv);
|
| | | extern void run_compare(int argc, char **argv);
|
| | | extern void run_classifier(int argc, char **argv);
|
| | | extern void run_char_rnn(int argc, char **argv);
|
| | | extern void run_vid_rnn(int argc, char **argv);
|
| | | extern void run_tag(int argc, char **argv);
|
| | | extern void run_cifar(int argc, char **argv);
|
| | | extern void run_go(int argc, char **argv);
|
| | | extern void run_art(int argc, char **argv);
|
| | | extern void run_super(int argc, char **argv);
|
| | |
|
| | | void average(int argc, char *argv[])
|
| | | {
|
| | | char *cfgfile = argv[2];
|
| | | char *outfile = argv[3];
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | network sum = parse_network_cfg(cfgfile);
|
| | |
|
| | | char *weightfile = argv[4];
|
| | | load_weights(&sum, weightfile);
|
| | |
|
| | | int i, j;
|
| | | int n = argc - 5;
|
| | | for(i = 0; i < n; ++i){
|
| | | weightfile = argv[i+5];
|
| | | load_weights(&net, weightfile);
|
| | | for(j = 0; j < net.n; ++j){
|
| | | layer l = net.layers[j];
|
| | | layer out = sum.layers[j];
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | int num = l.n*l.c*l.size*l.size;
|
| | | axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
|
| | | axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
|
| | | if(l.batch_normalize){
|
| | | axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
|
| | | axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
|
| | | axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
|
| | | }
|
| | | }
|
| | | if(l.type == CONNECTED){
|
| | | axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
|
| | | axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
|
| | | }
|
| | | }
|
| | | }
|
| | | n = n+1;
|
| | | for(j = 0; j < net.n; ++j){
|
| | | layer l = sum.layers[j];
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | int num = l.n*l.c*l.size*l.size;
|
| | | scal_cpu(l.n, 1./n, l.biases, 1);
|
| | | scal_cpu(num, 1./n, l.weights, 1);
|
| | | if(l.batch_normalize){
|
| | | scal_cpu(l.n, 1./n, l.scales, 1);
|
| | | scal_cpu(l.n, 1./n, l.rolling_mean, 1);
|
| | | scal_cpu(l.n, 1./n, l.rolling_variance, 1);
|
| | | }
|
| | | }
|
| | | if(l.type == CONNECTED){
|
| | | scal_cpu(l.outputs, 1./n, l.biases, 1);
|
| | | scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
|
| | | }
|
| | | }
|
| | | save_weights(sum, outfile);
|
| | | }
|
| | |
|
| | | void speed(char *cfgfile, int tics)
|
| | | {
|
| | | if (tics == 0) tics = 1000;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | set_batch_network(&net, 1);
|
| | | int i;
|
| | | time_t start = time(0);
|
| | | image im = make_image(net.w, net.h, net.c);
|
| | | for(i = 0; i < tics; ++i){
|
| | | network_predict(net, im.data);
|
| | | }
|
| | | double t = difftime(time(0), start);
|
| | | printf("\n%d evals, %f Seconds\n", tics, t);
|
| | | printf("Speed: %f sec/eval\n", t/tics);
|
| | | printf("Speed: %f Hz\n", tics/t);
|
| | | }
|
| | |
|
| | | void operations(char *cfgfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | int i;
|
| | | long ops = 0;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | layer l = net.layers[i];
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
|
| | | } else if(l.type == CONNECTED){
|
| | | ops += 2l * l.inputs * l.outputs;
|
| | | } else if (l.type == RNN){
|
| | | ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
|
| | | ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
|
| | | ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
|
| | | } else if (l.type == GRU){
|
| | | ops += 2l * l.uz->inputs * l.uz->outputs;
|
| | | ops += 2l * l.uh->inputs * l.uh->outputs;
|
| | | ops += 2l * l.ur->inputs * l.ur->outputs;
|
| | | ops += 2l * l.wz->inputs * l.wz->outputs;
|
| | | ops += 2l * l.wh->inputs * l.wh->outputs;
|
| | | ops += 2l * l.wr->inputs * l.wr->outputs;
|
| | | } else if (l.type == LSTM){
|
| | | ops += 2l * l.uf->inputs * l.uf->outputs;
|
| | | ops += 2l * l.ui->inputs * l.ui->outputs;
|
| | | ops += 2l * l.ug->inputs * l.ug->outputs;
|
| | | ops += 2l * l.uo->inputs * l.uo->outputs;
|
| | | ops += 2l * l.wf->inputs * l.wf->outputs;
|
| | | ops += 2l * l.wi->inputs * l.wi->outputs;
|
| | | ops += 2l * l.wg->inputs * l.wg->outputs;
|
| | | ops += 2l * l.wo->inputs * l.wo->outputs;
|
| | | }
|
| | | }
|
| | | printf("Floating Point Operations: %ld\n", ops);
|
| | | printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
|
| | | }
|
| | |
|
| | | void oneoff(char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | int oldn = net.layers[net.n - 2].n;
|
| | | int c = net.layers[net.n - 2].c;
|
| | | net.layers[net.n - 2].n = 9372;
|
| | | net.layers[net.n - 2].biases += 5;
|
| | | net.layers[net.n - 2].weights += 5*c;
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | net.layers[net.n - 2].biases -= 5;
|
| | | net.layers[net.n - 2].weights -= 5*c;
|
| | | net.layers[net.n - 2].n = oldn;
|
| | | printf("%d\n", oldn);
|
| | | layer l = net.layers[net.n - 2];
|
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1);
|
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
|
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1);
|
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
|
| | | *net.seen = 0;
|
| | | *net.cur_iteration = 0;
|
| | | save_weights(net, outfile);
|
| | | }
|
| | |
|
| | | void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1);
|
| | | if(weightfile){
|
| | | load_weights_upto(&net, weightfile, max);
|
| | | }
|
| | | *net.seen = 0;
|
| | | *net.cur_iteration = 0;
|
| | | save_weights_upto(net, outfile, max);
|
| | | }
|
| | |
|
| | | #include "convolutional_layer.h"
|
| | | void rescale_net(char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int i;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | layer l = net.layers[i];
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | rescale_weights(l, 2, -.5);
|
| | | break;
|
| | | }
|
| | | }
|
| | | save_weights(net, outfile);
|
| | | }
|
| | |
|
| | | void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int i;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | layer l = net.layers[i];
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | rgbgr_weights(l);
|
| | | break;
|
| | | }
|
| | | }
|
| | | save_weights(net, outfile);
|
| | | }
|
| | |
|
| | | void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int i;
|
| | | for (i = 0; i < net.n; ++i) {
|
| | | layer l = net.layers[i];
|
| | | if (l.type == CONVOLUTIONAL && l.batch_normalize) {
|
| | | denormalize_convolutional_layer(l);
|
| | | }
|
| | | if (l.type == CONNECTED && l.batch_normalize) {
|
| | | denormalize_connected_layer(l);
|
| | | }
|
| | | if (l.type == GRU && l.batch_normalize) {
|
| | | denormalize_connected_layer(*l.input_z_layer);
|
| | | denormalize_connected_layer(*l.input_r_layer);
|
| | | denormalize_connected_layer(*l.input_h_layer);
|
| | | denormalize_connected_layer(*l.state_z_layer);
|
| | | denormalize_connected_layer(*l.state_r_layer);
|
| | | denormalize_connected_layer(*l.state_h_layer);
|
| | | }
|
| | | if (l.type == LSTM && l.batch_normalize) {
|
| | | denormalize_connected_layer(*l.wf);
|
| | | denormalize_connected_layer(*l.wi);
|
| | | denormalize_connected_layer(*l.wg);
|
| | | denormalize_connected_layer(*l.wo);
|
| | | denormalize_connected_layer(*l.uf);
|
| | | denormalize_connected_layer(*l.ui);
|
| | | denormalize_connected_layer(*l.ug);
|
| | | denormalize_connected_layer(*l.uo);
|
| | | }
|
| | | }
|
| | | save_weights(net, outfile);
|
| | | }
|
| | |
|
| | | layer normalize_layer(layer l, int n)
|
| | | {
|
| | | int j;
|
| | | l.batch_normalize=1;
|
| | | l.scales = (float*)xcalloc(n, sizeof(float));
|
| | | for(j = 0; j < n; ++j){
|
| | | l.scales[j] = 1;
|
| | | }
|
| | | l.rolling_mean = (float*)xcalloc(n, sizeof(float));
|
| | | l.rolling_variance = (float*)xcalloc(n, sizeof(float));
|
| | | return l;
|
| | | }
|
| | |
|
| | | void normalize_net(char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int i;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | layer l = net.layers[i];
|
| | | if(l.type == CONVOLUTIONAL && !l.batch_normalize){
|
| | | net.layers[i] = normalize_layer(l, l.n);
|
| | | }
|
| | | if (l.type == CONNECTED && !l.batch_normalize) {
|
| | | net.layers[i] = normalize_layer(l, l.outputs);
|
| | | }
|
| | | if (l.type == GRU && l.batch_normalize) {
|
| | | *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
|
| | | *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
|
| | | *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
|
| | | *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
|
| | | *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
|
| | | *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
|
| | | net.layers[i].batch_normalize=1;
|
| | | }
|
| | | if (l.type == LSTM && l.batch_normalize) {
|
| | | *l.wf = normalize_layer(*l.wf, l.wf->outputs);
|
| | | *l.wi = normalize_layer(*l.wi, l.wi->outputs);
|
| | | *l.wg = normalize_layer(*l.wg, l.wg->outputs);
|
| | | *l.wo = normalize_layer(*l.wo, l.wo->outputs);
|
| | | *l.uf = normalize_layer(*l.uf, l.uf->outputs);
|
| | | *l.ui = normalize_layer(*l.ui, l.ui->outputs);
|
| | | *l.ug = normalize_layer(*l.ug, l.ug->outputs);
|
| | | *l.uo = normalize_layer(*l.uo, l.uo->outputs);
|
| | | net.layers[i].batch_normalize=1;
|
| | | }
|
| | | }
|
| | | save_weights(net, outfile);
|
| | | }
|
| | |
|
| | | void statistics_net(char *cfgfile, char *weightfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int i;
|
| | | for (i = 0; i < net.n; ++i) {
|
| | | layer l = net.layers[i];
|
| | | if (l.type == CONNECTED && l.batch_normalize) {
|
| | | printf("Connected Layer %d\n", i);
|
| | | statistics_connected_layer(l);
|
| | | }
|
| | | if (l.type == GRU && l.batch_normalize) {
|
| | | printf("GRU Layer %d\n", i);
|
| | | printf("Input Z\n");
|
| | | statistics_connected_layer(*l.input_z_layer);
|
| | | printf("Input R\n");
|
| | | statistics_connected_layer(*l.input_r_layer);
|
| | | printf("Input H\n");
|
| | | statistics_connected_layer(*l.input_h_layer);
|
| | | printf("State Z\n");
|
| | | statistics_connected_layer(*l.state_z_layer);
|
| | | printf("State R\n");
|
| | | statistics_connected_layer(*l.state_r_layer);
|
| | | printf("State H\n");
|
| | | statistics_connected_layer(*l.state_h_layer);
|
| | | }
|
| | | if (l.type == LSTM && l.batch_normalize) {
|
| | | printf("LSTM Layer %d\n", i);
|
| | | printf("wf\n");
|
| | | statistics_connected_layer(*l.wf);
|
| | | printf("wi\n");
|
| | | statistics_connected_layer(*l.wi);
|
| | | printf("wg\n");
|
| | | statistics_connected_layer(*l.wg);
|
| | | printf("wo\n");
|
| | | statistics_connected_layer(*l.wo);
|
| | | printf("uf\n");
|
| | | statistics_connected_layer(*l.uf);
|
| | | printf("ui\n");
|
| | | statistics_connected_layer(*l.ui);
|
| | | printf("ug\n");
|
| | | statistics_connected_layer(*l.ug);
|
| | | printf("uo\n");
|
| | | statistics_connected_layer(*l.uo);
|
| | | }
|
| | | printf("\n");
|
| | | }
|
| | | }
|
| | |
|
| | | void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
|
| | | {
|
| | | gpu_index = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if (weightfile) {
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int i;
|
| | | for (i = 0; i < net.n; ++i) {
|
| | | layer l = net.layers[i];
|
| | | if (l.type == CONVOLUTIONAL && l.batch_normalize) {
|
| | | denormalize_convolutional_layer(l);
|
| | | net.layers[i].batch_normalize=0;
|
| | | }
|
| | | if (l.type == CONNECTED && l.batch_normalize) {
|
| | | denormalize_connected_layer(l);
|
| | | net.layers[i].batch_normalize=0;
|
| | | }
|
| | | if (l.type == GRU && l.batch_normalize) {
|
| | | denormalize_connected_layer(*l.input_z_layer);
|
| | | denormalize_connected_layer(*l.input_r_layer);
|
| | | denormalize_connected_layer(*l.input_h_layer);
|
| | | denormalize_connected_layer(*l.state_z_layer);
|
| | | denormalize_connected_layer(*l.state_r_layer);
|
| | | denormalize_connected_layer(*l.state_h_layer);
|
| | | l.input_z_layer->batch_normalize = 0;
|
| | | l.input_r_layer->batch_normalize = 0;
|
| | | l.input_h_layer->batch_normalize = 0;
|
| | | l.state_z_layer->batch_normalize = 0;
|
| | | l.state_r_layer->batch_normalize = 0;
|
| | | l.state_h_layer->batch_normalize = 0;
|
| | | net.layers[i].batch_normalize=0;
|
| | | }
|
| | | if (l.type == GRU && l.batch_normalize) {
|
| | | denormalize_connected_layer(*l.wf);
|
| | | denormalize_connected_layer(*l.wi);
|
| | | denormalize_connected_layer(*l.wg);
|
| | | denormalize_connected_layer(*l.wo);
|
| | | denormalize_connected_layer(*l.uf);
|
| | | denormalize_connected_layer(*l.ui);
|
| | | denormalize_connected_layer(*l.ug);
|
| | | denormalize_connected_layer(*l.uo);
|
| | | l.wf->batch_normalize = 0;
|
| | | l.wi->batch_normalize = 0;
|
| | | l.wg->batch_normalize = 0;
|
| | | l.wo->batch_normalize = 0;
|
| | | l.uf->batch_normalize = 0;
|
| | | l.ui->batch_normalize = 0;
|
| | | l.ug->batch_normalize = 0;
|
| | | l.uo->batch_normalize = 0;
|
| | | net.layers[i].batch_normalize=0;
|
| | | }
|
| | | }
|
| | | save_weights(net, outfile);
|
| | | }
|
| | |
|
| | | void visualize(char *cfgfile, char *weightfile)
|
| | | {
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | visualize_network(net);
|
| | | #ifdef OPENCV
|
| | | wait_until_press_key_cv();
|
| | | #endif
|
| | | }
|
| | |
|
| | | //int main(int argc, char **argv)
|
| | | //{
|
| | | //#ifdef _DEBUG
|
| | | // _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
|
| | | // printf(" _DEBUG is used \n");
|
| | | //#endif
|
| | | //
|
| | | //#ifdef DEBUG
|
| | | // printf(" DEBUG=1 \n");
|
| | | //#endif
|
| | | //
|
| | | // int i;
|
| | | // for (i = 0; i < argc; ++i) {
|
| | | // if (!argv[i]) continue;
|
| | | // strip_args(argv[i]);
|
| | | // }
|
| | | //
|
| | | // //test_resize("data/bad.jpg");
|
| | | // //test_box();
|
| | | // //test_convolutional_layer();
|
| | | // if(argc < 2){
|
| | | // fprintf(stderr, "usage: %s <function>\n", argv[0]);
|
| | | // return 0;
|
| | | // }
|
| | | // gpu_index = find_int_arg(argc, argv, "-i", 0);
|
| | | // if(find_arg(argc, argv, "-nogpu")) {
|
| | | // gpu_index = -1;
|
| | | // printf("\n Currently Darknet doesn't support -nogpu flag. If you want to use CPU - please compile Darknet with GPU=0 in the Makefile, or compile darknet_no_gpu.sln on Windows.\n");
|
| | | // exit(-1);
|
| | | // }
|
| | | //
|
| | | //#ifndef GPU
|
| | | // gpu_index = -1;
|
| | | // printf(" GPU isn't used \n");
|
| | | // init_cpu();
|
| | | //#else // GPU
|
| | | // if(gpu_index >= 0){
|
| | | // cuda_set_device(gpu_index);
|
| | | // CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync));
|
| | | // }
|
| | | //
|
| | | // show_cuda_cudnn_info();
|
| | | // cuda_debug_sync = find_arg(argc, argv, "-cuda_debug_sync");
|
| | | //
|
| | | //#ifdef CUDNN_HALF
|
| | | // printf(" CUDNN_HALF=1 \n");
|
| | | //#endif // CUDNN_HALF
|
| | | //
|
| | | //#endif // GPU
|
| | | //
|
| | | // show_opencv_info();
|
| | | //
|
| | | // if (0 == strcmp(argv[1], "average")){
|
| | | // average(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "yolo")){
|
| | | // run_yolo(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "voxel")){
|
| | | // run_voxel(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "super")){
|
| | | // run_super(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "detector")){
|
| | | // run_detector(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "detect")){
|
| | | // float thresh = find_float_arg(argc, argv, "-thresh", .24);
|
| | | // int ext_output = find_arg(argc, argv, "-ext_output");
|
| | | // char *filename = (argc > 4) ? argv[4]: 0;
|
| | | // test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0);
|
| | | // } else if (0 == strcmp(argv[1], "cifar")){
|
| | | // run_cifar(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "go")){
|
| | | // run_go(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "rnn")){
|
| | | // run_char_rnn(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "vid")){
|
| | | // run_vid_rnn(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "coco")){
|
| | | // run_coco(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "classify")){
|
| | | // predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
|
| | | // } else if (0 == strcmp(argv[1], "classifier")){
|
| | | // run_classifier(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "art")){
|
| | | // run_art(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "tag")){
|
| | | // run_tag(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "compare")){
|
| | | // run_compare(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "dice")){
|
| | | // run_dice(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "writing")){
|
| | | // run_writing(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "3d")){
|
| | | // composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
|
| | | // } else if (0 == strcmp(argv[1], "test")){
|
| | | // test_resize(argv[2]);
|
| | | // } else if (0 == strcmp(argv[1], "captcha")){
|
| | | // run_captcha(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "nightmare")){
|
| | | // run_nightmare(argc, argv);
|
| | | // } else if (0 == strcmp(argv[1], "rgbgr")){
|
| | | // rgbgr_net(argv[2], argv[3], argv[4]);
|
| | | // } else if (0 == strcmp(argv[1], "reset")){
|
| | | // reset_normalize_net(argv[2], argv[3], argv[4]);
|
| | | // } else if (0 == strcmp(argv[1], "denormalize")){
|
| | | // denormalize_net(argv[2], argv[3], argv[4]);
|
| | | // } else if (0 == strcmp(argv[1], "statistics")){
|
| | | // statistics_net(argv[2], argv[3]);
|
| | | // } else if (0 == strcmp(argv[1], "normalize")){
|
| | | // normalize_net(argv[2], argv[3], argv[4]);
|
| | | // } else if (0 == strcmp(argv[1], "rescale")){
|
| | | // rescale_net(argv[2], argv[3], argv[4]);
|
| | | // } else if (0 == strcmp(argv[1], "ops")){
|
| | | // operations(argv[2]);
|
| | | // } else if (0 == strcmp(argv[1], "speed")){
|
| | | // speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
|
| | | // } else if (0 == strcmp(argv[1], "oneoff")){
|
| | | // oneoff(argv[2], argv[3], argv[4]);
|
| | | // } else if (0 == strcmp(argv[1], "partial")){
|
| | | // partial(argv[2], argv[3], argv[4], atoi(argv[5]));
|
| | | // } else if (0 == strcmp(argv[1], "visualize")){
|
| | | // visualize(argv[2], (argc > 3) ? argv[3] : 0);
|
| | | // } else if (0 == strcmp(argv[1], "imtest")){
|
| | | // test_resize(argv[2]);
|
| | | // } else {
|
| | | // fprintf(stderr, "Not an option: %s\n", argv[1]);
|
| | | // }
|
| | | // return 0;
|
| | | //}
|
| | | #include "darknet.h" |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #if defined(_MSC_VER) && defined(_DEBUG) |
| | | #include <crtdbg.h> |
| | | #endif |
| | | |
| | | #include "parser.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include "connected_layer.h" |
| | | |
| | | |
| | | extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); |
| | | extern void run_voxel(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_detector(int argc, char **argv); |
| | | extern void run_coco(int argc, char **argv); |
| | | extern void run_writing(int argc, char **argv); |
| | | extern void run_captcha(int argc, char **argv); |
| | | extern void run_nightmare(int argc, char **argv); |
| | | extern void run_dice(int argc, char **argv); |
| | | extern void run_compare(int argc, char **argv); |
| | | extern void run_classifier(int argc, char **argv); |
| | | extern void run_char_rnn(int argc, char **argv); |
| | | extern void run_vid_rnn(int argc, char **argv); |
| | | extern void run_tag(int argc, char **argv); |
| | | extern void run_cifar(int argc, char **argv); |
| | | extern void run_go(int argc, char **argv); |
| | | extern void run_art(int argc, char **argv); |
| | | extern void run_super(int argc, char **argv); |
| | | |
| | | void average(int argc, char *argv[]) |
| | | { |
| | | char *cfgfile = argv[2]; |
| | | char *outfile = argv[3]; |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | network sum = parse_network_cfg(cfgfile); |
| | | |
| | | char *weightfile = argv[4]; |
| | | load_weights(&sum, weightfile); |
| | | |
| | | int i, j; |
| | | int n = argc - 5; |
| | | for(i = 0; i < n; ++i){ |
| | | weightfile = argv[i+5]; |
| | | load_weights(&net, weightfile); |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = net.layers[j]; |
| | | layer out = sum.layers[j]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(num, 1, l.weights, 1, out.weights, 1); |
| | | if(l.batch_normalize){ |
| | | axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); |
| | | axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); |
| | | axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); |
| | | } |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); |
| | | } |
| | | } |
| | | } |
| | | n = n+1; |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = sum.layers[j]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | scal_cpu(l.n, 1./n, l.biases, 1); |
| | | scal_cpu(num, 1./n, l.weights, 1); |
| | | if(l.batch_normalize){ |
| | | scal_cpu(l.n, 1./n, l.scales, 1); |
| | | scal_cpu(l.n, 1./n, l.rolling_mean, 1); |
| | | scal_cpu(l.n, 1./n, l.rolling_variance, 1); |
| | | } |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | scal_cpu(l.outputs, 1./n, l.biases, 1); |
| | | scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); |
| | | } |
| | | } |
| | | save_weights(sum, outfile); |
| | | } |
| | | |
| | | void speed(char *cfgfile, int tics) |
| | | { |
| | | if (tics == 0) tics = 1000; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | int i; |
| | | time_t start = time(0); |
| | | image im = make_image(net.w, net.h, net.c); |
| | | for(i = 0; i < tics; ++i){ |
| | | network_predict(net, im.data); |
| | | } |
| | | double t = difftime(time(0), start); |
| | | printf("\n%d evals, %f Seconds\n", tics, t); |
| | | printf("Speed: %f sec/eval\n", t/tics); |
| | | printf("Speed: %f Hz\n", tics/t); |
| | | } |
| | | |
| | | void operations(char *cfgfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | int i; |
| | | long ops = 0; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w; |
| | | } else if(l.type == CONNECTED){ |
| | | ops += 2l * l.inputs * l.outputs; |
| | | } else if (l.type == RNN){ |
| | | ops += 2l * l.input_layer->inputs * l.input_layer->outputs; |
| | | ops += 2l * l.self_layer->inputs * l.self_layer->outputs; |
| | | ops += 2l * l.output_layer->inputs * l.output_layer->outputs; |
| | | } else if (l.type == GRU){ |
| | | ops += 2l * l.uz->inputs * l.uz->outputs; |
| | | ops += 2l * l.uh->inputs * l.uh->outputs; |
| | | ops += 2l * l.ur->inputs * l.ur->outputs; |
| | | ops += 2l * l.wz->inputs * l.wz->outputs; |
| | | ops += 2l * l.wh->inputs * l.wh->outputs; |
| | | ops += 2l * l.wr->inputs * l.wr->outputs; |
| | | } else if (l.type == LSTM){ |
| | | ops += 2l * l.uf->inputs * l.uf->outputs; |
| | | ops += 2l * l.ui->inputs * l.ui->outputs; |
| | | ops += 2l * l.ug->inputs * l.ug->outputs; |
| | | ops += 2l * l.uo->inputs * l.uo->outputs; |
| | | ops += 2l * l.wf->inputs * l.wf->outputs; |
| | | ops += 2l * l.wi->inputs * l.wi->outputs; |
| | | ops += 2l * l.wg->inputs * l.wg->outputs; |
| | | ops += 2l * l.wo->inputs * l.wo->outputs; |
| | | } |
| | | } |
| | | printf("Floating Point Operations: %ld\n", ops); |
| | | printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); |
| | | } |
| | | |
| | | void oneoff(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | int oldn = net.layers[net.n - 2].n; |
| | | int c = net.layers[net.n - 2].c; |
| | | net.layers[net.n - 2].n = 9372; |
| | | net.layers[net.n - 2].biases += 5; |
| | | net.layers[net.n - 2].weights += 5*c; |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.layers[net.n - 2].biases -= 5; |
| | | net.layers[net.n - 2].weights -= 5*c; |
| | | net.layers[net.n - 2].n = oldn; |
| | | printf("%d\n", oldn); |
| | | layer l = net.layers[net.n - 2]; |
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); |
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); |
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); |
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); |
| | | *net.seen = 0; |
| | | *net.cur_iteration = 0; |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void partial(char *cfgfile, char *weightfile, char *outfile, int max) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); |
| | | if(weightfile){ |
| | | load_weights_upto(&net, weightfile, max); |
| | | } |
| | | *net.seen = 0; |
| | | *net.cur_iteration = 0; |
| | | save_weights_upto(net, outfile, max, 0); |
| | | } |
| | | |
| | | #include "convolutional_layer.h" |
| | | void rescale_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | rescale_weights(l, 2, -.5); |
| | | break; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | rgbgr_weights(l); |
| | | break; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL && l.batch_normalize) { |
| | | denormalize_convolutional_layer(l); |
| | | } |
| | | if (l.type == CONNECTED && l.batch_normalize) { |
| | | denormalize_connected_layer(l); |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | denormalize_connected_layer(*l.input_z_layer); |
| | | denormalize_connected_layer(*l.input_r_layer); |
| | | denormalize_connected_layer(*l.input_h_layer); |
| | | denormalize_connected_layer(*l.state_z_layer); |
| | | denormalize_connected_layer(*l.state_r_layer); |
| | | denormalize_connected_layer(*l.state_h_layer); |
| | | } |
| | | if (l.type == LSTM && l.batch_normalize) { |
| | | denormalize_connected_layer(*l.wf); |
| | | denormalize_connected_layer(*l.wi); |
| | | denormalize_connected_layer(*l.wg); |
| | | denormalize_connected_layer(*l.wo); |
| | | denormalize_connected_layer(*l.uf); |
| | | denormalize_connected_layer(*l.ui); |
| | | denormalize_connected_layer(*l.ug); |
| | | denormalize_connected_layer(*l.uo); |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | layer normalize_layer(layer l, int n) |
| | | { |
| | | int j; |
| | | l.batch_normalize=1; |
| | | l.scales = (float*)xcalloc(n, sizeof(float)); |
| | | for(j = 0; j < n; ++j){ |
| | | l.scales[j] = 1; |
| | | } |
| | | l.rolling_mean = (float*)xcalloc(n, sizeof(float)); |
| | | l.rolling_variance = (float*)xcalloc(n, sizeof(float)); |
| | | return l; |
| | | } |
| | | |
| | | void normalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL && !l.batch_normalize){ |
| | | net.layers[i] = normalize_layer(l, l.n); |
| | | } |
| | | if (l.type == CONNECTED && !l.batch_normalize) { |
| | | net.layers[i] = normalize_layer(l, l.outputs); |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs); |
| | | *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs); |
| | | *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs); |
| | | *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs); |
| | | *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs); |
| | | *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs); |
| | | net.layers[i].batch_normalize=1; |
| | | } |
| | | if (l.type == LSTM && l.batch_normalize) { |
| | | *l.wf = normalize_layer(*l.wf, l.wf->outputs); |
| | | *l.wi = normalize_layer(*l.wi, l.wi->outputs); |
| | | *l.wg = normalize_layer(*l.wg, l.wg->outputs); |
| | | *l.wo = normalize_layer(*l.wo, l.wo->outputs); |
| | | *l.uf = normalize_layer(*l.uf, l.uf->outputs); |
| | | *l.ui = normalize_layer(*l.ui, l.ui->outputs); |
| | | *l.ug = normalize_layer(*l.ug, l.ug->outputs); |
| | | *l.uo = normalize_layer(*l.uo, l.uo->outputs); |
| | | net.layers[i].batch_normalize=1; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void statistics_net(char *cfgfile, char *weightfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONNECTED && l.batch_normalize) { |
| | | printf("Connected Layer %d\n", i); |
| | | statistics_connected_layer(l); |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | printf("GRU Layer %d\n", i); |
| | | printf("Input Z\n"); |
| | | statistics_connected_layer(*l.input_z_layer); |
| | | printf("Input R\n"); |
| | | statistics_connected_layer(*l.input_r_layer); |
| | | printf("Input H\n"); |
| | | statistics_connected_layer(*l.input_h_layer); |
| | | printf("State Z\n"); |
| | | statistics_connected_layer(*l.state_z_layer); |
| | | printf("State R\n"); |
| | | statistics_connected_layer(*l.state_r_layer); |
| | | printf("State H\n"); |
| | | statistics_connected_layer(*l.state_h_layer); |
| | | } |
| | | if (l.type == LSTM && l.batch_normalize) { |
| | | printf("LSTM Layer %d\n", i); |
| | | printf("wf\n"); |
| | | statistics_connected_layer(*l.wf); |
| | | printf("wi\n"); |
| | | statistics_connected_layer(*l.wi); |
| | | printf("wg\n"); |
| | | statistics_connected_layer(*l.wg); |
| | | printf("wo\n"); |
| | | statistics_connected_layer(*l.wo); |
| | | printf("uf\n"); |
| | | statistics_connected_layer(*l.uf); |
| | | printf("ui\n"); |
| | | statistics_connected_layer(*l.ui); |
| | | printf("ug\n"); |
| | | statistics_connected_layer(*l.ug); |
| | | printf("uo\n"); |
| | | statistics_connected_layer(*l.uo); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | } |
| | | |
| | | void denormalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL && l.batch_normalize) { |
| | | denormalize_convolutional_layer(l); |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | if (l.type == CONNECTED && l.batch_normalize) { |
| | | denormalize_connected_layer(l); |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | denormalize_connected_layer(*l.input_z_layer); |
| | | denormalize_connected_layer(*l.input_r_layer); |
| | | denormalize_connected_layer(*l.input_h_layer); |
| | | denormalize_connected_layer(*l.state_z_layer); |
| | | denormalize_connected_layer(*l.state_r_layer); |
| | | denormalize_connected_layer(*l.state_h_layer); |
| | | l.input_z_layer->batch_normalize = 0; |
| | | l.input_r_layer->batch_normalize = 0; |
| | | l.input_h_layer->batch_normalize = 0; |
| | | l.state_z_layer->batch_normalize = 0; |
| | | l.state_r_layer->batch_normalize = 0; |
| | | l.state_h_layer->batch_normalize = 0; |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | denormalize_connected_layer(*l.wf); |
| | | denormalize_connected_layer(*l.wi); |
| | | denormalize_connected_layer(*l.wg); |
| | | denormalize_connected_layer(*l.wo); |
| | | denormalize_connected_layer(*l.uf); |
| | | denormalize_connected_layer(*l.ui); |
| | | denormalize_connected_layer(*l.ug); |
| | | denormalize_connected_layer(*l.uo); |
| | | l.wf->batch_normalize = 0; |
| | | l.wi->batch_normalize = 0; |
| | | l.wg->batch_normalize = 0; |
| | | l.wo->batch_normalize = 0; |
| | | l.uf->batch_normalize = 0; |
| | | l.ui->batch_normalize = 0; |
| | | l.ug->batch_normalize = 0; |
| | | l.uo->batch_normalize = 0; |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void visualize(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | visualize_network(net); |
| | | #ifdef OPENCV |
| | | wait_until_press_key_cv(); |
| | | #endif |
| | | } |
| | | |
| | | //int main(int argc, char **argv) |
| | | //{ |
| | | //#ifdef _DEBUG |
| | | // _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); |
| | | // printf(" _DEBUG is used \n"); |
| | | //#endif |
| | | // |
| | | //#ifdef DEBUG |
| | | // printf(" DEBUG=1 \n"); |
| | | //#endif |
| | | // |
| | | // int i; |
| | | // for (i = 0; i < argc; ++i) { |
| | | // if (!argv[i]) continue; |
| | | // strip_args(argv[i]); |
| | | // } |
| | | // |
| | | // //test_resize("data/bad.jpg"); |
| | | // //test_box(); |
| | | // //test_convolutional_layer(); |
| | | // if(argc < 2){ |
| | | // fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | // return 0; |
| | | // } |
| | | // gpu_index = find_int_arg(argc, argv, "-i", 0); |
| | | // if(find_arg(argc, argv, "-nogpu")) { |
| | | // gpu_index = -1; |
| | | // printf("\n Currently Darknet doesn't support -nogpu flag. If you want to use CPU - please compile Darknet with GPU=0 in the Makefile, or compile darknet_no_gpu.sln on Windows.\n"); |
| | | // exit(-1); |
| | | // } |
| | | // |
| | | //#ifndef GPU |
| | | // gpu_index = -1; |
| | | // printf(" GPU isn't used \n"); |
| | | // init_cpu(); |
| | | //#else // GPU |
| | | // if(gpu_index >= 0){ |
| | | // cuda_set_device(gpu_index); |
| | | // CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync)); |
| | | // } |
| | | // |
| | | // show_cuda_cudnn_info(); |
| | | // cuda_debug_sync = find_arg(argc, argv, "-cuda_debug_sync"); |
| | | // |
| | | //#ifdef CUDNN_HALF |
| | | // printf(" CUDNN_HALF=1 \n"); |
| | | //#endif // CUDNN_HALF |
| | | // |
| | | //#endif // GPU |
| | | // |
| | | // show_opencv_info(); |
| | | // |
| | | // if (0 == strcmp(argv[1], "average")){ |
| | | // average(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "yolo")){ |
| | | // run_yolo(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "voxel")){ |
| | | // run_voxel(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "super")){ |
| | | // run_super(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "detector")){ |
| | | // run_detector(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "detect")){ |
| | | // float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | // int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | // char *filename = (argc > 4) ? argv[4]: 0; |
| | | // test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, 0.5, 0, ext_output, 0, NULL, 0, 0); |
| | | // } else if (0 == strcmp(argv[1], "cifar")){ |
| | | // run_cifar(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "go")){ |
| | | // run_go(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "rnn")){ |
| | | // run_char_rnn(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "vid")){ |
| | | // run_vid_rnn(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "coco")){ |
| | | // run_coco(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "classify")){ |
| | | // predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); |
| | | // } else if (0 == strcmp(argv[1], "classifier")){ |
| | | // run_classifier(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "art")){ |
| | | // run_art(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "tag")){ |
| | | // run_tag(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "compare")){ |
| | | // run_compare(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "dice")){ |
| | | // run_dice(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "writing")){ |
| | | // run_writing(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "3d")){ |
| | | // composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); |
| | | // } else if (0 == strcmp(argv[1], "test")){ |
| | | // test_resize(argv[2]); |
| | | // } else if (0 == strcmp(argv[1], "captcha")){ |
| | | // run_captcha(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "nightmare")){ |
| | | // run_nightmare(argc, argv); |
| | | // } else if (0 == strcmp(argv[1], "rgbgr")){ |
| | | // rgbgr_net(argv[2], argv[3], argv[4]); |
| | | // } else if (0 == strcmp(argv[1], "reset")){ |
| | | // reset_normalize_net(argv[2], argv[3], argv[4]); |
| | | // } else if (0 == strcmp(argv[1], "denormalize")){ |
| | | // denormalize_net(argv[2], argv[3], argv[4]); |
| | | // } else if (0 == strcmp(argv[1], "statistics")){ |
| | | // statistics_net(argv[2], argv[3]); |
| | | // } else if (0 == strcmp(argv[1], "normalize")){ |
| | | // normalize_net(argv[2], argv[3], argv[4]); |
| | | // } else if (0 == strcmp(argv[1], "rescale")){ |
| | | // rescale_net(argv[2], argv[3], argv[4]); |
| | | // } else if (0 == strcmp(argv[1], "ops")){ |
| | | // operations(argv[2]); |
| | | // } else if (0 == strcmp(argv[1], "speed")){ |
| | | // speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); |
| | | // } else if (0 == strcmp(argv[1], "oneoff")){ |
| | | // oneoff(argv[2], argv[3], argv[4]); |
| | | // } else if (0 == strcmp(argv[1], "partial")){ |
| | | // partial(argv[2], argv[3], argv[4], atoi(argv[5])); |
| | | // } else if (0 == strcmp(argv[1], "visualize")){ |
| | | // visualize(argv[2], (argc > 3) ? argv[3] : 0); |
| | | // } else if (0 == strcmp(argv[1], "imtest")){ |
| | | // test_resize(argv[2]); |
| | | // } else { |
| | | // fprintf(stderr, "Not an option: %s\n", argv[1]); |
| | | // } |
| | | // return 0; |
| | | //} |