| | |
| | | #include <cuda_runtime.h>
|
| | | #include <curand.h>
|
| | | #include <cublas_v2.h>
|
| | |
|
| | | #include "convolutional_layer.h"
|
| | | #include "deconvolutional_layer.h"
|
| | | #include "gemm.h"
|
| | | #include "blas.h"
|
| | | #include "im2col.h"
|
| | | #include "col2im.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | |
|
| | | extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
|
| | | {
|
| | | int i;
|
| | | int out_h = deconvolutional_out_height(layer);
|
| | | int out_w = deconvolutional_out_width(layer);
|
| | | int size = out_h*out_w;
|
| | |
|
| | | int m = layer.size*layer.size*layer.n;
|
| | | int n = layer.h*layer.w;
|
| | | int k = layer.c;
|
| | |
|
| | | fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1);
|
| | |
|
| | | for(i = 0; i < layer.batch; ++i){
|
| | | float *a = layer.weights_gpu;
|
| | | float *b = state.input + i*layer.c*layer.h*layer.w;
|
| | | float *c = layer.col_image_gpu;
|
| | |
|
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
| | |
|
| | | col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size);
|
| | | }
|
| | | add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size);
|
| | | activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
|
| | | }
|
| | |
|
| | | extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
|
| | | {
|
| | | float alpha = 1./layer.batch;
|
| | | int out_h = deconvolutional_out_height(layer);
|
| | | int out_w = deconvolutional_out_width(layer);
|
| | | int size = out_h*out_w;
|
| | | int i;
|
| | |
|
| | | gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
|
| | | backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
|
| | |
|
| | | if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
| | |
|
| | | for(i = 0; i < layer.batch; ++i){
|
| | | int m = layer.c;
|
| | | int n = layer.size*layer.size*layer.n;
|
| | | int k = layer.h*layer.w;
|
| | |
|
| | | float *a = state.input + i*m*n;
|
| | | float *b = layer.col_image_gpu;
|
| | | float *c = layer.weight_updates_gpu;
|
| | |
|
| | | im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w,
|
| | | layer.size, layer.stride, 0, b);
|
| | | gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
|
| | |
|
| | | if(state.delta){
|
| | | int m = layer.c;
|
| | | int n = layer.h*layer.w;
|
| | | int k = layer.size*layer.size*layer.n;
|
| | |
|
| | | float *a = layer.weights_gpu;
|
| | | float *b = layer.col_image_gpu;
|
| | | float *c = state.delta + i*n*m;
|
| | |
|
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer)
|
| | | {
|
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
|
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
|
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
|
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
| | | }
|
| | |
|
| | | extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
|
| | | {
|
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
|
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
|
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
|
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
| | | }
|
| | |
|
| | | extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay)
|
| | | {
|
| | | int size = layer.size*layer.size*layer.c*layer.n;
|
| | |
|
| | | axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
| | | scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
|
| | |
|
| | | axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
| | | axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
|
| | | scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
|
| | | }
|
| | | #include <cuda_runtime.h> |
| | | #include <curand.h> |
| | | #include <cublas_v2.h> |
| | | |
| | | #include "convolutional_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "gemm.h" |
| | | #include "blas.h" |
| | | #include "im2col.h" |
| | | #include "col2im.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | |
| | | extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | int out_h = deconvolutional_out_height(layer); |
| | | int out_w = deconvolutional_out_width(layer); |
| | | int size = out_h*out_w; |
| | | |
| | | int m = layer.size*layer.size*layer.n; |
| | | int n = layer.h*layer.w; |
| | | int k = layer.c; |
| | | |
| | | fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float *a = layer.weights_gpu; |
| | | float *b = state.input + i*layer.c*layer.h*layer.w; |
| | | float *c = layer.col_image_gpu; |
| | | |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | |
| | | col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size); |
| | | } |
| | | add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size); |
| | | activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation); |
| | | } |
| | | |
| | | extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int out_h = deconvolutional_out_height(layer); |
| | | int out_w = deconvolutional_out_width(layer); |
| | | int size = out_h*out_w; |
| | | int i; |
| | | |
| | | gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu); |
| | | backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size); |
| | | |
| | | if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | int m = layer.c; |
| | | int n = layer.size*layer.size*layer.n; |
| | | int k = layer.h*layer.w; |
| | | |
| | | float *a = state.input + i*m*n; |
| | | float *b = layer.col_image_gpu; |
| | | float *c = layer.weight_updates_gpu; |
| | | |
| | | im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, |
| | | layer.size, layer.stride, 0, b); |
| | | gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | int m = layer.c; |
| | | int n = layer.h*layer.w; |
| | | int k = layer.size*layer.size*layer.n; |
| | | |
| | | float *a = layer.weights_gpu; |
| | | float *b = layer.col_image_gpu; |
| | | float *c = state.delta + i*n*m; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | } |
| | | |
| | | extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer) |
| | | { |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | } |
| | | |
| | | extern "C" void push_deconvolutional_layer(deconvolutional_layer layer) |
| | | { |
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | } |
| | | |
| | | extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | |
| | | axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); |
| | | } |