| | |
| | | #include "deconvolutional_layer.h"
|
| | | #include "convolutional_layer.h"
|
| | | #include "utils.h"
|
| | | #include "im2col.h"
|
| | | #include "col2im.h"
|
| | | #include "blas.h"
|
| | | #include "gemm.h"
|
| | | #include <stdio.h>
|
| | | #include <time.h>
|
| | |
|
| | | int deconvolutional_out_height(deconvolutional_layer l)
|
| | | {
|
| | | int h = l.stride*(l.h - 1) + l.size;
|
| | | return h;
|
| | | }
|
| | |
|
| | | int deconvolutional_out_width(deconvolutional_layer l)
|
| | | {
|
| | | int w = l.stride*(l.w - 1) + l.size;
|
| | | return w;
|
| | | }
|
| | |
|
| | | int deconvolutional_out_size(deconvolutional_layer l)
|
| | | {
|
| | | return deconvolutional_out_height(l) * deconvolutional_out_width(l);
|
| | | }
|
| | |
|
| | | image get_deconvolutional_image(deconvolutional_layer l)
|
| | | {
|
| | | int h,w,c;
|
| | | h = deconvolutional_out_height(l);
|
| | | w = deconvolutional_out_width(l);
|
| | | c = l.n;
|
| | | return float_to_image(w,h,c,l.output);
|
| | | }
|
| | |
|
| | | image get_deconvolutional_delta(deconvolutional_layer l)
|
| | | {
|
| | | int h,w,c;
|
| | | h = deconvolutional_out_height(l);
|
| | | w = deconvolutional_out_width(l);
|
| | | c = l.n;
|
| | | return float_to_image(w,h,c,l.delta);
|
| | | }
|
| | |
|
| | | deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
| | | {
|
| | | int i;
|
| | | deconvolutional_layer l = { (LAYER_TYPE)0 };
|
| | | l.type = DECONVOLUTIONAL;
|
| | |
|
| | | l.h = h;
|
| | | l.w = w;
|
| | | l.c = c;
|
| | | l.n = n;
|
| | | l.batch = batch;
|
| | | l.stride = stride;
|
| | | l.size = size;
|
| | |
|
| | | l.weights = (float*)xcalloc(c * n * size * size, sizeof(float));
|
| | | l.weight_updates = (float*)xcalloc(c * n * size * size, sizeof(float));
|
| | |
|
| | | l.biases = (float*)xcalloc(n, sizeof(float));
|
| | | l.bias_updates = (float*)xcalloc(n, sizeof(float));
|
| | | float scale = 1./sqrt(size*size*c);
|
| | | for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal();
|
| | | for(i = 0; i < n; ++i){
|
| | | l.biases[i] = scale;
|
| | | }
|
| | | int out_h = deconvolutional_out_height(l);
|
| | | int out_w = deconvolutional_out_width(l);
|
| | |
|
| | | l.out_h = out_h;
|
| | | l.out_w = out_w;
|
| | | l.out_c = n;
|
| | | l.outputs = l.out_w * l.out_h * l.out_c;
|
| | | l.inputs = l.w * l.h * l.c;
|
| | |
|
| | | l.col_image = (float*)xcalloc(h * w * size * size * n, sizeof(float));
|
| | | l.output = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
|
| | | l.delta = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float));
|
| | |
|
| | | l.forward = forward_deconvolutional_layer;
|
| | | l.backward = backward_deconvolutional_layer;
|
| | | l.update = update_deconvolutional_layer;
|
| | |
|
| | | #ifdef GPU
|
| | | l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
|
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
|
| | |
|
| | | l.biases_gpu = cuda_make_array(l.biases, n);
|
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
| | |
|
| | | l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
|
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
| | | #endif
|
| | |
|
| | | l.activation = activation;
|
| | |
|
| | | fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
| | |
|
| | | return l;
|
| | | }
|
| | |
|
| | | void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
|
| | | {
|
| | | l->h = h;
|
| | | l->w = w;
|
| | | int out_h = deconvolutional_out_height(*l);
|
| | | int out_w = deconvolutional_out_width(*l);
|
| | |
|
| | | l->col_image = (float*)xrealloc(l->col_image,
|
| | | out_h*out_w*l->size*l->size*l->c*sizeof(float));
|
| | | l->output = (float*)xrealloc(l->output,
|
| | | l->batch*out_h * out_w * l->n*sizeof(float));
|
| | | l->delta = (float*)xrealloc(l->delta,
|
| | | l->batch*out_h * out_w * l->n*sizeof(float));
|
| | | #ifdef GPU
|
| | | cuda_free(l->col_image_gpu);
|
| | | cuda_free(l->delta_gpu);
|
| | | cuda_free(l->output_gpu);
|
| | |
|
| | | l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
|
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
| | | l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
| | | #endif
|
| | | }
|
| | |
|
| | | void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
|
| | | {
|
| | | int i;
|
| | | int out_h = deconvolutional_out_height(l);
|
| | | int out_w = deconvolutional_out_width(l);
|
| | | int size = out_h*out_w;
|
| | |
|
| | | int m = l.size*l.size*l.n;
|
| | | int n = l.h*l.w;
|
| | | int k = l.c;
|
| | |
|
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
| | |
|
| | | for(i = 0; i < l.batch; ++i){
|
| | | float *a = l.weights;
|
| | | float *b = state.input + i*l.c*l.h*l.w;
|
| | | float *c = l.col_image;
|
| | |
|
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
| | |
|
| | | col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
|
| | | }
|
| | | add_bias(l.output, l.biases, l.batch, l.n, size);
|
| | | activate_array(l.output, l.batch*l.n*size, l.activation);
|
| | | }
|
| | |
|
| | | void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
|
| | | {
|
| | | float alpha = 1./l.batch;
|
| | | int out_h = deconvolutional_out_height(l);
|
| | | int out_w = deconvolutional_out_width(l);
|
| | | int size = out_h*out_w;
|
| | | int i;
|
| | |
|
| | | gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
|
| | | backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
|
| | |
|
| | | for(i = 0; i < l.batch; ++i){
|
| | | int m = l.c;
|
| | | int n = l.size*l.size*l.n;
|
| | | int k = l.h*l.w;
|
| | |
|
| | | float *a = state.input + i*m*n;
|
| | | float *b = l.col_image;
|
| | | float *c = l.weight_updates;
|
| | |
|
| | | im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w,
|
| | | l.size, l.stride, 0, b);
|
| | | gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
|
| | |
|
| | | if(state.delta){
|
| | | int m = l.c;
|
| | | int n = l.h*l.w;
|
| | | int k = l.size*l.size*l.n;
|
| | |
|
| | | float *a = l.weights;
|
| | | float *b = l.col_image;
|
| | | float *c = state.delta + i*n*m;
|
| | |
|
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void update_deconvolutional_layer(deconvolutional_layer l, int skip, float learning_rate, float momentum, float decay)
|
| | | {
|
| | | int size = l.size*l.size*l.c*l.n;
|
| | | axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
|
| | | scal_cpu(l.n, momentum, l.bias_updates, 1);
|
| | |
|
| | | axpy_cpu(size, -decay, l.weights, 1, l.weight_updates, 1);
|
| | | axpy_cpu(size, learning_rate, l.weight_updates, 1, l.weights, 1);
|
| | | scal_cpu(size, momentum, l.weight_updates, 1);
|
| | | }
|
| | | #include "deconvolutional_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include "im2col.h" |
| | | #include "col2im.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | |
| | | int deconvolutional_out_height(deconvolutional_layer l) |
| | | { |
| | | int h = l.stride*(l.h - 1) + l.size; |
| | | return h; |
| | | } |
| | | |
| | | int deconvolutional_out_width(deconvolutional_layer l) |
| | | { |
| | | int w = l.stride*(l.w - 1) + l.size; |
| | | return w; |
| | | } |
| | | |
| | | int deconvolutional_out_size(deconvolutional_layer l) |
| | | { |
| | | return deconvolutional_out_height(l) * deconvolutional_out_width(l); |
| | | } |
| | | |
| | | image get_deconvolutional_image(deconvolutional_layer l) |
| | | { |
| | | int h,w,c; |
| | | h = deconvolutional_out_height(l); |
| | | w = deconvolutional_out_width(l); |
| | | c = l.n; |
| | | return float_to_image(w,h,c,l.output); |
| | | } |
| | | |
| | | image get_deconvolutional_delta(deconvolutional_layer l) |
| | | { |
| | | int h,w,c; |
| | | h = deconvolutional_out_height(l); |
| | | w = deconvolutional_out_width(l); |
| | | c = l.n; |
| | | return float_to_image(w,h,c,l.delta); |
| | | } |
| | | |
| | | deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | deconvolutional_layer l = { (LAYER_TYPE)0 }; |
| | | l.type = DECONVOLUTIONAL; |
| | | |
| | | l.h = h; |
| | | l.w = w; |
| | | l.c = c; |
| | | l.n = n; |
| | | l.batch = batch; |
| | | l.stride = stride; |
| | | l.size = size; |
| | | |
| | | l.weights = (float*)xcalloc(c * n * size * size, sizeof(float)); |
| | | l.weight_updates = (float*)xcalloc(c * n * size * size, sizeof(float)); |
| | | |
| | | l.biases = (float*)xcalloc(n, sizeof(float)); |
| | | l.bias_updates = (float*)xcalloc(n, sizeof(float)); |
| | | float scale = 1./sqrt(size*size*c); |
| | | for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | l.biases[i] = scale; |
| | | } |
| | | int out_h = deconvolutional_out_height(l); |
| | | int out_w = deconvolutional_out_width(l); |
| | | |
| | | l.out_h = out_h; |
| | | l.out_w = out_w; |
| | | l.out_c = n; |
| | | l.outputs = l.out_w * l.out_h * l.out_c; |
| | | l.inputs = l.w * l.h * l.c; |
| | | |
| | | l.col_image = (float*)xcalloc(h * w * size * size * n, sizeof(float)); |
| | | l.output = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float)); |
| | | l.delta = (float*)xcalloc(l.batch * out_h * out_w * n, sizeof(float)); |
| | | |
| | | l.forward = forward_deconvolutional_layer; |
| | | l.backward = backward_deconvolutional_layer; |
| | | l.update = update_deconvolutional_layer; |
| | | |
| | | #ifdef GPU |
| | | l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); |
| | | |
| | | l.biases_gpu = cuda_make_array(l.biases, n); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); |
| | | |
| | | l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n); |
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | #endif |
| | | |
| | | l.activation = activation; |
| | | |
| | | fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w) |
| | | { |
| | | l->h = h; |
| | | l->w = w; |
| | | int out_h = deconvolutional_out_height(*l); |
| | | int out_w = deconvolutional_out_width(*l); |
| | | |
| | | l->col_image = (float*)xrealloc(l->col_image, |
| | | out_h*out_w*l->size*l->size*l->c*sizeof(float)); |
| | | l->output = (float*)xrealloc(l->output, |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | l->delta = (float*)xrealloc(l->delta, |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | #ifdef GPU |
| | | cuda_free(l->col_image_gpu); |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n); |
| | | #endif |
| | | } |
| | | |
| | | void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int out_h = deconvolutional_out_height(l); |
| | | int out_w = deconvolutional_out_width(l); |
| | | int size = out_h*out_w; |
| | | |
| | | int m = l.size*l.size*l.n; |
| | | int n = l.h*l.w; |
| | | int k = l.c; |
| | | |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float *a = l.weights; |
| | | float *b = state.input + i*l.c*l.h*l.w; |
| | | float *c = l.col_image; |
| | | |
| | | gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); |
| | | |
| | | col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size); |
| | | } |
| | | add_bias(l.output, l.biases, l.batch, l.n, size); |
| | | activate_array(l.output, l.batch*l.n*size, l.activation); |
| | | } |
| | | |
| | | void backward_deconvolutional_layer(deconvolutional_layer l, network_state state) |
| | | { |
| | | float alpha = 1./l.batch; |
| | | int out_h = deconvolutional_out_height(l); |
| | | int out_w = deconvolutional_out_width(l); |
| | | int size = out_h*out_w; |
| | | int i; |
| | | |
| | | gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta); |
| | | backward_bias(l.bias_updates, l.delta, l.batch, l.n, size); |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | int m = l.c; |
| | | int n = l.size*l.size*l.n; |
| | | int k = l.h*l.w; |
| | | |
| | | float *a = state.input + i*m*n; |
| | | float *b = l.col_image; |
| | | float *c = l.weight_updates; |
| | | |
| | | im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w, |
| | | l.size, l.stride, 0, b); |
| | | gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | int m = l.c; |
| | | int n = l.h*l.w; |
| | | int k = l.size*l.size*l.n; |
| | | |
| | | float *a = l.weights; |
| | | float *b = l.col_image; |
| | | float *c = state.delta + i*n*m; |
| | | |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_deconvolutional_layer(deconvolutional_layer l, int skip, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = l.size*l.size*l.c*l.n; |
| | | axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.n, momentum, l.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -decay, l.weights, 1, l.weight_updates, 1); |
| | | axpy_cpu(size, learning_rate, l.weight_updates, 1, l.weights, 1); |
| | | scal_cpu(size, momentum, l.weight_updates, 1); |
| | | } |