| | |
| | | #include "detection_layer.h"
|
| | | #include "activations.h"
|
| | | #include "softmax_layer.h"
|
| | | #include "blas.h"
|
| | | #include "box.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "utils.h"
|
| | | #include <stdio.h>
|
| | | #include <assert.h>
|
| | | #include <string.h>
|
| | | #include <stdlib.h>
|
| | |
|
| | | detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore)
|
| | | {
|
| | | detection_layer l = { (LAYER_TYPE)0 };
|
| | | l.type = DETECTION;
|
| | |
|
| | | l.n = n;
|
| | | l.batch = batch;
|
| | | l.inputs = inputs;
|
| | | l.classes = classes;
|
| | | l.coords = coords;
|
| | | l.rescore = rescore;
|
| | | l.side = side;
|
| | | l.w = side;
|
| | | l.h = side;
|
| | | assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
|
| | | l.cost = (float*)xcalloc(1, sizeof(float));
|
| | | l.outputs = l.inputs;
|
| | | l.truths = l.side*l.side*(1+l.coords+l.classes);
|
| | | l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
|
| | | l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
|
| | |
|
| | | l.forward = forward_detection_layer;
|
| | | l.backward = backward_detection_layer;
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_detection_layer_gpu;
|
| | | l.backward_gpu = backward_detection_layer_gpu;
|
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
|
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
| | | #endif
|
| | |
|
| | | fprintf(stderr, "Detection Layer\n");
|
| | | srand(time(0));
|
| | |
|
| | | return l;
|
| | | }
|
| | |
|
| | | void forward_detection_layer(const detection_layer l, network_state state)
|
| | | {
|
| | | int locations = l.side*l.side;
|
| | | int i,j;
|
| | | memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
|
| | | //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
|
| | | int b;
|
| | | if (l.softmax){
|
| | | for(b = 0; b < l.batch; ++b){
|
| | | int index = b*l.inputs;
|
| | | for (i = 0; i < locations; ++i) {
|
| | | int offset = i*l.classes;
|
| | | softmax(l.output + index + offset, l.classes, 1,
|
| | | l.output + index + offset, 1);
|
| | | }
|
| | | }
|
| | | }
|
| | | if(state.train){
|
| | | float avg_iou = 0;
|
| | | float avg_cat = 0;
|
| | | float avg_allcat = 0;
|
| | | float avg_obj = 0;
|
| | | float avg_anyobj = 0;
|
| | | int count = 0;
|
| | | *(l.cost) = 0;
|
| | | int size = l.inputs * l.batch;
|
| | | memset(l.delta, 0, size * sizeof(float));
|
| | | for (b = 0; b < l.batch; ++b){
|
| | | int index = b*l.inputs;
|
| | | for (i = 0; i < locations; ++i) {
|
| | | int truth_index = (b*locations + i)*(1+l.coords+l.classes);
|
| | | int is_obj = state.truth[truth_index];
|
| | | for (j = 0; j < l.n; ++j) {
|
| | | int p_index = index + locations*l.classes + i*l.n + j;
|
| | | l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
|
| | | *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
|
| | | avg_anyobj += l.output[p_index];
|
| | | }
|
| | |
|
| | | int best_index = -1;
|
| | | float best_iou = 0;
|
| | | float best_rmse = 20;
|
| | |
|
| | | if (!is_obj){
|
| | | continue;
|
| | | }
|
| | |
|
| | | int class_index = index + i*l.classes;
|
| | | for(j = 0; j < l.classes; ++j) {
|
| | | l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
|
| | | *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
|
| | | if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
|
| | | avg_allcat += l.output[class_index+j];
|
| | | }
|
| | |
|
| | | box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
|
| | | truth.x /= l.side;
|
| | | truth.y /= l.side;
|
| | |
|
| | | for(j = 0; j < l.n; ++j){
|
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
|
| | | box out = float_to_box(l.output + box_index);
|
| | | out.x /= l.side;
|
| | | out.y /= l.side;
|
| | |
|
| | | if (l.sqrt){
|
| | | out.w = out.w*out.w;
|
| | | out.h = out.h*out.h;
|
| | | }
|
| | |
|
| | | float iou = box_iou(out, truth);
|
| | | //iou = 0;
|
| | | float rmse = box_rmse(out, truth);
|
| | | if(best_iou > 0 || iou > 0){
|
| | | if(iou > best_iou){
|
| | | best_iou = iou;
|
| | | best_index = j;
|
| | | }
|
| | | }else{
|
| | | if(rmse < best_rmse){
|
| | | best_rmse = rmse;
|
| | | best_index = j;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | if(l.forced){
|
| | | if(truth.w*truth.h < .1){
|
| | | best_index = 1;
|
| | | }else{
|
| | | best_index = 0;
|
| | | }
|
| | | }
|
| | | if(l.random && *(state.net.seen) < 64000){
|
| | | best_index = rand()%l.n;
|
| | | }
|
| | |
|
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
|
| | | int tbox_index = truth_index + 1 + l.classes;
|
| | |
|
| | | box out = float_to_box(l.output + box_index);
|
| | | out.x /= l.side;
|
| | | out.y /= l.side;
|
| | | if (l.sqrt) {
|
| | | out.w = out.w*out.w;
|
| | | out.h = out.h*out.h;
|
| | | }
|
| | | float iou = box_iou(out, truth);
|
| | |
|
| | | //printf("%d,", best_index);
|
| | | int p_index = index + locations*l.classes + i*l.n + best_index;
|
| | | *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
|
| | | *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
|
| | | avg_obj += l.output[p_index];
|
| | | l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);
|
| | |
|
| | | if(l.rescore){
|
| | | l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
|
| | | }
|
| | |
|
| | | l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
|
| | | l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
|
| | | l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
|
| | | l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
|
| | | if(l.sqrt){
|
| | | l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
|
| | | l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
|
| | | }
|
| | |
|
| | | *(l.cost) += pow(1-iou, 2);
|
| | | avg_iou += iou;
|
| | | ++count;
|
| | | }
|
| | | }
|
| | |
|
| | | if(0){
|
| | | float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float));
|
| | | for (b = 0; b < l.batch; ++b) {
|
| | | int index = b*l.inputs;
|
| | | for (i = 0; i < locations; ++i) {
|
| | | for (j = 0; j < l.n; ++j) {
|
| | | int p_index = index + locations*l.classes + i*l.n + j;
|
| | | costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
|
| | | }
|
| | | }
|
| | | }
|
| | | int indexes[100];
|
| | | top_k(costs, l.batch*locations*l.n, 100, indexes);
|
| | | float cutoff = costs[indexes[99]];
|
| | | for (b = 0; b < l.batch; ++b) {
|
| | | int index = b*l.inputs;
|
| | | for (i = 0; i < locations; ++i) {
|
| | | for (j = 0; j < l.n; ++j) {
|
| | | int p_index = index + locations*l.classes + i*l.n + j;
|
| | | if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
|
| | | }
|
| | | }
|
| | | }
|
| | | free(costs);
|
| | | }
|
| | |
|
| | |
|
| | | *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
|
| | |
|
| | |
|
| | | printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
|
| | | //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_detection_layer(const detection_layer l, network_state state)
|
| | | {
|
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
|
| | | }
|
| | |
|
| | | void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
|
| | | {
|
| | | int i,j,n;
|
| | | float *predictions = l.output;
|
| | | //int per_cell = 5*num+classes;
|
| | | for (i = 0; i < l.side*l.side; ++i){
|
| | | int row = i / l.side;
|
| | | int col = i % l.side;
|
| | | for(n = 0; n < l.n; ++n){
|
| | | int index = i*l.n + n;
|
| | | int p_index = l.side*l.side*l.classes + i*l.n + n;
|
| | | float scale = predictions[p_index];
|
| | | int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
|
| | | boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
|
| | | boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
|
| | | boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
|
| | | boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
|
| | | for(j = 0; j < l.classes; ++j){
|
| | | int class_index = i*l.classes;
|
| | | float prob = scale*predictions[class_index+j];
|
| | | probs[index][j] = (prob > thresh) ? prob : 0;
|
| | | }
|
| | | if(only_objectness){
|
| | | probs[index][0] = scale;
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | void forward_detection_layer_gpu(const detection_layer l, network_state state)
|
| | | {
|
| | | if(!state.train){
|
| | | copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
|
| | | return;
|
| | | }
|
| | |
|
| | | float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float));
|
| | | float *truth_cpu = 0;
|
| | | if(state.truth){
|
| | | int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes);
|
| | | truth_cpu = (float*)xcalloc(num_truth, sizeof(float));
|
| | | cuda_pull_array(state.truth, truth_cpu, num_truth);
|
| | | }
|
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
|
| | | network_state cpu_state = state;
|
| | | cpu_state.train = state.train;
|
| | | cpu_state.truth = truth_cpu;
|
| | | cpu_state.input = in_cpu;
|
| | | forward_detection_layer(l, cpu_state);
|
| | | cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
| | | free(cpu_state.input);
|
| | | if(cpu_state.truth) free(cpu_state.truth);
|
| | | }
|
| | |
|
| | | void backward_detection_layer_gpu(detection_layer l, network_state state)
|
| | | {
|
| | | axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
|
| | | //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
|
| | | }
|
| | | #endif
|
| | |
|
| | | void get_detection_detections(layer l, int w, int h, float thresh, detection *dets)
|
| | | {
|
| | | int i, j, n;
|
| | | float *predictions = l.output;
|
| | | //int per_cell = 5*num+classes;
|
| | | for (i = 0; i < l.side*l.side; ++i) {
|
| | | int row = i / l.side;
|
| | | int col = i % l.side;
|
| | | for (n = 0; n < l.n; ++n) {
|
| | | int index = i*l.n + n;
|
| | | int p_index = l.side*l.side*l.classes + i*l.n + n;
|
| | | float scale = predictions[p_index];
|
| | | int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4;
|
| | | box b;
|
| | | b.x = (predictions[box_index + 0] + col) / l.side * w;
|
| | | b.y = (predictions[box_index + 1] + row) / l.side * h;
|
| | | b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w;
|
| | | b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h;
|
| | | dets[index].bbox = b;
|
| | | dets[index].objectness = scale;
|
| | | for (j = 0; j < l.classes; ++j) {
|
| | | int class_index = i*l.classes;
|
| | | float prob = scale*predictions[class_index + j];
|
| | | dets[index].prob[j] = (prob > thresh) ? prob : 0;
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | #include "detection_layer.h" |
| | | #include "activations.h" |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "box.h" |
| | | #include "dark_cuda.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | #include <assert.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) |
| | | { |
| | | detection_layer l = { (LAYER_TYPE)0 }; |
| | | l.type = DETECTION; |
| | | |
| | | l.n = n; |
| | | l.batch = batch; |
| | | l.inputs = inputs; |
| | | l.classes = classes; |
| | | l.coords = coords; |
| | | l.rescore = rescore; |
| | | l.side = side; |
| | | l.w = side; |
| | | l.h = side; |
| | | assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); |
| | | l.cost = (float*)xcalloc(1, sizeof(float)); |
| | | l.outputs = l.inputs; |
| | | l.truths = l.side*l.side*(1+l.coords+l.classes); |
| | | l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); |
| | | l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); |
| | | |
| | | l.forward = forward_detection_layer; |
| | | l.backward = backward_detection_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_detection_layer_gpu; |
| | | l.backward_gpu = backward_detection_layer_gpu; |
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Detection Layer\n"); |
| | | srand(time(0)); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int locations = l.side*l.side; |
| | | int i,j; |
| | | memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); |
| | | //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); |
| | | int b; |
| | | if (l.softmax){ |
| | | for(b = 0; b < l.batch; ++b){ |
| | | int index = b*l.inputs; |
| | | for (i = 0; i < locations; ++i) { |
| | | int offset = i*l.classes; |
| | | softmax(l.output + index + offset, l.classes, 1, |
| | | l.output + index + offset, 1); |
| | | } |
| | | } |
| | | } |
| | | if(state.train){ |
| | | float avg_iou = 0; |
| | | float avg_cat = 0; |
| | | float avg_allcat = 0; |
| | | float avg_obj = 0; |
| | | float avg_anyobj = 0; |
| | | int count = 0; |
| | | *(l.cost) = 0; |
| | | int size = l.inputs * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (b = 0; b < l.batch; ++b){ |
| | | int index = b*l.inputs; |
| | | for (i = 0; i < locations; ++i) { |
| | | int truth_index = (b*locations + i)*(1+l.coords+l.classes); |
| | | int is_obj = state.truth[truth_index]; |
| | | for (j = 0; j < l.n; ++j) { |
| | | int p_index = index + locations*l.classes + i*l.n + j; |
| | | l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); |
| | | *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); |
| | | avg_anyobj += l.output[p_index]; |
| | | } |
| | | |
| | | int best_index = -1; |
| | | float best_iou = 0; |
| | | float best_rmse = 20; |
| | | |
| | | if (!is_obj){ |
| | | continue; |
| | | } |
| | | |
| | | int class_index = index + i*l.classes; |
| | | for(j = 0; j < l.classes; ++j) { |
| | | l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); |
| | | *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); |
| | | if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; |
| | | avg_allcat += l.output[class_index+j]; |
| | | } |
| | | |
| | | box truth = float_to_box(state.truth + truth_index + 1 + l.classes); |
| | | truth.x /= l.side; |
| | | truth.y /= l.side; |
| | | |
| | | for(j = 0; j < l.n; ++j){ |
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; |
| | | box out = float_to_box(l.output + box_index); |
| | | out.x /= l.side; |
| | | out.y /= l.side; |
| | | |
| | | if (l.sqrt){ |
| | | out.w = out.w*out.w; |
| | | out.h = out.h*out.h; |
| | | } |
| | | |
| | | float iou = box_iou(out, truth); |
| | | //iou = 0; |
| | | float rmse = box_rmse(out, truth); |
| | | if(best_iou > 0 || iou > 0){ |
| | | if(iou > best_iou){ |
| | | best_iou = iou; |
| | | best_index = j; |
| | | } |
| | | }else{ |
| | | if(rmse < best_rmse){ |
| | | best_rmse = rmse; |
| | | best_index = j; |
| | | } |
| | | } |
| | | } |
| | | |
| | | if(l.forced){ |
| | | if(truth.w*truth.h < .1){ |
| | | best_index = 1; |
| | | }else{ |
| | | best_index = 0; |
| | | } |
| | | } |
| | | if(l.random && *(state.net.seen) < 64000){ |
| | | best_index = rand()%l.n; |
| | | } |
| | | |
| | | int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; |
| | | int tbox_index = truth_index + 1 + l.classes; |
| | | |
| | | box out = float_to_box(l.output + box_index); |
| | | out.x /= l.side; |
| | | out.y /= l.side; |
| | | if (l.sqrt) { |
| | | out.w = out.w*out.w; |
| | | out.h = out.h*out.h; |
| | | } |
| | | float iou = box_iou(out, truth); |
| | | |
| | | //printf("%d,", best_index); |
| | | int p_index = index + locations*l.classes + i*l.n + best_index; |
| | | *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); |
| | | *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); |
| | | avg_obj += l.output[p_index]; |
| | | l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); |
| | | |
| | | if(l.rescore){ |
| | | l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); |
| | | } |
| | | |
| | | l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); |
| | | l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); |
| | | l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); |
| | | l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); |
| | | if(l.sqrt){ |
| | | l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); |
| | | l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); |
| | | } |
| | | |
| | | *(l.cost) += pow(1-iou, 2); |
| | | avg_iou += iou; |
| | | ++count; |
| | | } |
| | | } |
| | | |
| | | if(0){ |
| | | float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float)); |
| | | for (b = 0; b < l.batch; ++b) { |
| | | int index = b*l.inputs; |
| | | for (i = 0; i < locations; ++i) { |
| | | for (j = 0; j < l.n; ++j) { |
| | | int p_index = index + locations*l.classes + i*l.n + j; |
| | | costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index]; |
| | | } |
| | | } |
| | | } |
| | | int indexes[100]; |
| | | top_k(costs, l.batch*locations*l.n, 100, indexes); |
| | | float cutoff = costs[indexes[99]]; |
| | | for (b = 0; b < l.batch; ++b) { |
| | | int index = b*l.inputs; |
| | | for (i = 0; i < locations; ++i) { |
| | | for (j = 0; j < l.n; ++j) { |
| | | int p_index = index + locations*l.classes + i*l.n + j; |
| | | if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0; |
| | | } |
| | | } |
| | | } |
| | | free(costs); |
| | | } |
| | | |
| | | |
| | | *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
| | | |
| | | |
| | | printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); |
| | | //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); |
| | | } |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | float *predictions = l.output; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < l.side*l.side; ++i){ |
| | | int row = i / l.side; |
| | | int col = i % l.side; |
| | | for(n = 0; n < l.n; ++n){ |
| | | int index = i*l.n + n; |
| | | int p_index = l.side*l.side*l.classes + i*l.n + n; |
| | | float scale = predictions[p_index]; |
| | | int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4; |
| | | boxes[index].x = (predictions[box_index + 0] + col) / l.side * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row) / l.side * h; |
| | | boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w; |
| | | boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | int class_index = i*l.classes; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_detection_layer_gpu(const detection_layer l, network_state state) |
| | | { |
| | | if(!state.train){ |
| | | copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); |
| | | return; |
| | | } |
| | | |
| | | float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); |
| | | truth_cpu = (float*)xcalloc(num_truth, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, num_truth); |
| | | } |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state = state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(l, cpu_state); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_detection_layer_gpu(detection_layer l, network_state state) |
| | | { |
| | | axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); |
| | | //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | #endif |
| | | |
| | | void get_detection_detections(layer l, int w, int h, float thresh, detection *dets) |
| | | { |
| | | int i, j, n; |
| | | float *predictions = l.output; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < l.side*l.side; ++i) { |
| | | int row = i / l.side; |
| | | int col = i % l.side; |
| | | for (n = 0; n < l.n; ++n) { |
| | | int index = i*l.n + n; |
| | | int p_index = l.side*l.side*l.classes + i*l.n + n; |
| | | float scale = predictions[p_index]; |
| | | int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4; |
| | | box b; |
| | | b.x = (predictions[box_index + 0] + col) / l.side * w; |
| | | b.y = (predictions[box_index + 1] + row) / l.side * h; |
| | | b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w; |
| | | b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h; |
| | | dets[index].bbox = b; |
| | | dets[index].objectness = scale; |
| | | for (j = 0; j < l.classes; ++j) { |
| | | int class_index = i*l.classes; |
| | | float prob = scale*predictions[class_index + j]; |
| | | dets[index].prob[j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | } |
| | | } |
| | | } |