| | |
| | | #include "dropout_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include <stdlib.h>
|
| | | #include <stdio.h>
|
| | |
|
| | | dropout_layer make_dropout_layer(int batch, int inputs, float probability, int dropblock, float dropblock_size_rel, int dropblock_size_abs, int w, int h, int c)
|
| | | {
|
| | | dropout_layer l = { (LAYER_TYPE)0 };
|
| | | l.type = DROPOUT;
|
| | | l.probability = probability;
|
| | | l.dropblock = dropblock;
|
| | | l.dropblock_size_rel = dropblock_size_rel;
|
| | | l.dropblock_size_abs = dropblock_size_abs;
|
| | | if (l.dropblock) {
|
| | | l.out_w = l.w = w;
|
| | | l.out_h = l.h = h;
|
| | | l.out_c = l.c = c;
|
| | |
|
| | | if (l.w <= 0 || l.h <= 0 || l.c <= 0) {
|
| | | printf(" Error: DropBlock - there must be positive values for: l.w=%d, l.h=%d, l.c=%d \n", l.w, l.h, l.c);
|
| | | exit(0);
|
| | | }
|
| | | }
|
| | | l.inputs = inputs;
|
| | | l.outputs = inputs;
|
| | | l.batch = batch;
|
| | | l.rand = (float*)xcalloc(inputs * batch, sizeof(float));
|
| | | l.scale = 1./(1.0 - probability);
|
| | | l.forward = forward_dropout_layer;
|
| | | l.backward = backward_dropout_layer;
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_dropout_layer_gpu;
|
| | | l.backward_gpu = backward_dropout_layer_gpu;
|
| | | l.rand_gpu = cuda_make_array(l.rand, inputs*batch);
|
| | | if (l.dropblock) {
|
| | | l.drop_blocks_scale = cuda_make_array_pinned(l.rand, l.batch);
|
| | | l.drop_blocks_scale_gpu = cuda_make_array(l.rand, l.batch);
|
| | | }
|
| | | #endif
|
| | | if (l.dropblock) {
|
| | | if(l.dropblock_size_abs) fprintf(stderr, "dropblock p = %.3f l.dropblock_size_abs = %d %4d -> %4d\n", probability, l.dropblock_size_abs, inputs, inputs);
|
| | | else fprintf(stderr, "dropblock p = %.3f l.dropblock_size_rel = %.2f %4d -> %4d\n", probability, l.dropblock_size_rel, inputs, inputs);
|
| | | }
|
| | | else fprintf(stderr, "dropout p = %.3f %4d -> %4d\n", probability, inputs, inputs);
|
| | | return l;
|
| | | }
|
| | |
|
| | | void resize_dropout_layer(dropout_layer *l, int inputs)
|
| | | {
|
| | | l->inputs = l->outputs = inputs;
|
| | | l->rand = (float*)xrealloc(l->rand, l->inputs * l->batch * sizeof(float));
|
| | | #ifdef GPU
|
| | | cuda_free(l->rand_gpu);
|
| | | l->rand_gpu = cuda_make_array(l->rand, l->inputs*l->batch);
|
| | |
|
| | | if (l->dropblock) {
|
| | | cudaFreeHost(l->drop_blocks_scale);
|
| | | l->drop_blocks_scale = cuda_make_array_pinned(l->rand, l->batch);
|
| | |
|
| | | cuda_free(l->drop_blocks_scale_gpu);
|
| | | l->drop_blocks_scale_gpu = cuda_make_array(l->rand, l->batch);
|
| | | }
|
| | | #endif
|
| | | }
|
| | |
|
| | | void forward_dropout_layer(dropout_layer l, network_state state)
|
| | | {
|
| | | int i;
|
| | | if (!state.train) return;
|
| | | for(i = 0; i < l.batch * l.inputs; ++i){
|
| | | float r = rand_uniform(0, 1);
|
| | | l.rand[i] = r;
|
| | | if(r < l.probability) state.input[i] = 0;
|
| | | else state.input[i] *= l.scale;
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_dropout_layer(dropout_layer l, network_state state)
|
| | | {
|
| | | int i;
|
| | | if(!state.delta) return;
|
| | | for(i = 0; i < l.batch * l.inputs; ++i){
|
| | | float r = l.rand[i];
|
| | | if(r < l.probability) state.delta[i] = 0;
|
| | | else state.delta[i] *= l.scale;
|
| | | }
|
| | | }
|
| | | #include "dropout_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | dropout_layer make_dropout_layer(int batch, int inputs, float probability, int dropblock, float dropblock_size_rel, int dropblock_size_abs, int w, int h, int c) |
| | | { |
| | | dropout_layer l = { (LAYER_TYPE)0 }; |
| | | l.type = DROPOUT; |
| | | l.probability = probability; |
| | | l.dropblock = dropblock; |
| | | l.dropblock_size_rel = dropblock_size_rel; |
| | | l.dropblock_size_abs = dropblock_size_abs; |
| | | if (l.dropblock) { |
| | | l.out_w = l.w = w; |
| | | l.out_h = l.h = h; |
| | | l.out_c = l.c = c; |
| | | |
| | | if (l.w <= 0 || l.h <= 0 || l.c <= 0) { |
| | | printf(" Error: DropBlock - there must be positive values for: l.w=%d, l.h=%d, l.c=%d \n", l.w, l.h, l.c); |
| | | exit(0); |
| | | } |
| | | } |
| | | l.inputs = inputs; |
| | | l.outputs = inputs; |
| | | l.batch = batch; |
| | | l.rand = (float*)xcalloc(inputs * batch, sizeof(float)); |
| | | l.scale = 1./(1.0 - probability); |
| | | l.forward = forward_dropout_layer; |
| | | l.backward = backward_dropout_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_dropout_layer_gpu; |
| | | l.backward_gpu = backward_dropout_layer_gpu; |
| | | l.rand_gpu = cuda_make_array(l.rand, inputs*batch); |
| | | if (l.dropblock) { |
| | | l.drop_blocks_scale = cuda_make_array_pinned(l.rand, l.batch); |
| | | l.drop_blocks_scale_gpu = cuda_make_array(l.rand, l.batch); |
| | | } |
| | | #endif |
| | | if (l.dropblock) { |
| | | if(l.dropblock_size_abs) fprintf(stderr, "dropblock p = %.3f l.dropblock_size_abs = %d %4d -> %4d\n", probability, l.dropblock_size_abs, inputs, inputs); |
| | | else fprintf(stderr, "dropblock p = %.3f l.dropblock_size_rel = %.2f %4d -> %4d\n", probability, l.dropblock_size_rel, inputs, inputs); |
| | | } |
| | | else fprintf(stderr, "dropout p = %.3f %4d -> %4d\n", probability, inputs, inputs); |
| | | return l; |
| | | } |
| | | |
| | | void resize_dropout_layer(dropout_layer *l, int inputs) |
| | | { |
| | | l->inputs = l->outputs = inputs; |
| | | l->rand = (float*)xrealloc(l->rand, l->inputs * l->batch * sizeof(float)); |
| | | #ifdef GPU |
| | | cuda_free(l->rand_gpu); |
| | | l->rand_gpu = cuda_make_array(l->rand, l->inputs*l->batch); |
| | | |
| | | if (l->dropblock) { |
| | | cudaFreeHost(l->drop_blocks_scale); |
| | | l->drop_blocks_scale = cuda_make_array_pinned(l->rand, l->batch); |
| | | |
| | | cuda_free(l->drop_blocks_scale_gpu); |
| | | l->drop_blocks_scale_gpu = cuda_make_array(l->rand, l->batch); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void forward_dropout_layer(dropout_layer l, network_state state) |
| | | { |
| | | int i; |
| | | if (!state.train) return; |
| | | for(i = 0; i < l.batch * l.inputs; ++i){ |
| | | float r = rand_uniform(0, 1); |
| | | l.rand[i] = r; |
| | | if(r < l.probability) state.input[i] = 0; |
| | | else state.input[i] *= l.scale; |
| | | } |
| | | } |
| | | |
| | | void backward_dropout_layer(dropout_layer l, network_state state) |
| | | { |
| | | int i; |
| | | if(!state.delta) return; |
| | | for(i = 0; i < l.batch * l.inputs; ++i){ |
| | | float r = l.rand[i]; |
| | | if(r < l.probability) state.delta[i] = 0; |
| | | else state.delta[i] *= l.scale; |
| | | } |
| | | } |