| | |
| | | #include "gru_layer.h"
|
| | | #include "connected_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include "gemm.h"
|
| | |
|
| | | #include <math.h>
|
| | | #include <stdio.h>
|
| | | #include <stdlib.h>
|
| | | #include <string.h>
|
| | |
|
| | | static void increment_layer(layer *l, int steps)
|
| | | {
|
| | | int num = l->outputs*l->batch*steps;
|
| | | l->output += num;
|
| | | l->delta += num;
|
| | | l->x += num;
|
| | | l->x_norm += num;
|
| | |
|
| | | #ifdef GPU
|
| | | l->output_gpu += num;
|
| | | l->delta_gpu += num;
|
| | | l->x_gpu += num;
|
| | | l->x_norm_gpu += num;
|
| | | #endif
|
| | | }
|
| | |
|
| | | layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
|
| | | {
|
| | | fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs);
|
| | | batch = batch / steps;
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.batch = batch;
|
| | | l.type = GRU;
|
| | | l.steps = steps;
|
| | | l.inputs = inputs;
|
| | |
|
| | | l.input_z_layer = (layer*)xcalloc(1,sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.input_z_layer->batch = batch;
|
| | |
|
| | | l.state_z_layer = (layer*)xcalloc(1,sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.state_z_layer->batch = batch;
|
| | |
|
| | |
|
| | |
|
| | | l.input_r_layer = (layer*)xcalloc(1,sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.input_r_layer->batch = batch;
|
| | |
|
| | | l.state_r_layer = (layer*)xcalloc(1,sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.state_r_layer->batch = batch;
|
| | |
|
| | |
|
| | |
|
| | | l.input_h_layer = (layer*)xcalloc(1,sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.input_h_layer->batch = batch;
|
| | |
|
| | | l.state_h_layer = (layer*)xcalloc(1,sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.state_h_layer->batch = batch;
|
| | |
|
| | | l.batch_normalize = batch_normalize;
|
| | |
|
| | |
|
| | | l.outputs = outputs;
|
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
|
| | | l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float));
|
| | | l.state = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | | l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | | l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | | l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | |
|
| | | l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | | l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | | l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | |
|
| | | l.forward = forward_gru_layer;
|
| | | l.backward = backward_gru_layer;
|
| | | l.update = update_gru_layer;
|
| | |
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_gru_layer_gpu;
|
| | | l.backward_gpu = backward_gru_layer_gpu;
|
| | | l.update_gpu = update_gru_layer_gpu;
|
| | |
|
| | | l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs);
|
| | | l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs);
|
| | | l.prev_state_gpu = cuda_make_array(l.output, batch*outputs);
|
| | | l.state_gpu = cuda_make_array(l.output, batch*outputs);
|
| | | l.output_gpu = cuda_make_array(l.output, batch*outputs*steps);
|
| | | l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps);
|
| | | l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs);
|
| | | l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs);
|
| | | l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs);
|
| | | #endif
|
| | |
|
| | | return l;
|
| | | }
|
| | |
|
| | | void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
| | | {
|
| | | update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
|
| | | }
|
| | |
|
| | | void forward_gru_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer input_z_layer = *(l.input_z_layer);
|
| | | layer input_r_layer = *(l.input_r_layer);
|
| | | layer input_h_layer = *(l.input_h_layer);
|
| | |
|
| | | layer state_z_layer = *(l.state_z_layer);
|
| | | layer state_r_layer = *(l.state_r_layer);
|
| | | layer state_h_layer = *(l.state_h_layer);
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1);
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1);
|
| | | if(state.train) {
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i) {
|
| | | s.input = l.state;
|
| | | forward_connected_layer(state_z_layer, s);
|
| | | forward_connected_layer(state_r_layer, s);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_connected_layer(input_z_layer, s);
|
| | | forward_connected_layer(input_r_layer, s);
|
| | | forward_connected_layer(input_h_layer, s);
|
| | |
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1);
|
| | |
|
| | | activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1);
|
| | |
|
| | | s.input = l.forgot_state;
|
| | | forward_connected_layer(state_h_layer, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1);
|
| | |
|
| | | #ifdef USET
|
| | | activate_array(l.h_cpu, l.outputs*l.batch, TANH);
|
| | | #else
|
| | | activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | #endif
|
| | |
|
| | | weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output += l.outputs*l.batch;
|
| | | increment_layer(&input_z_layer, 1);
|
| | | increment_layer(&input_r_layer, 1);
|
| | | increment_layer(&input_h_layer, 1);
|
| | |
|
| | | increment_layer(&state_z_layer, 1);
|
| | | increment_layer(&state_r_layer, 1);
|
| | | increment_layer(&state_h_layer, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_gru_layer(layer l, network_state state)
|
| | | {
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | |
|
| | | void pull_gru_layer(layer l)
|
| | | {
|
| | | }
|
| | |
|
| | | void push_gru_layer(layer l)
|
| | | {
|
| | | }
|
| | |
|
| | | void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
|
| | | {
|
| | | update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay, loss_scale);
|
| | | }
|
| | |
|
| | | void forward_gru_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer input_z_layer = *(l.input_z_layer);
|
| | | layer input_r_layer = *(l.input_r_layer);
|
| | | layer input_h_layer = *(l.input_h_layer);
|
| | |
|
| | | layer state_z_layer = *(l.state_z_layer);
|
| | | layer state_r_layer = *(l.state_r_layer);
|
| | | layer state_h_layer = *(l.state_h_layer);
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1);
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1);
|
| | | if(state.train) {
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i) {
|
| | | s.input = l.state_gpu;
|
| | | forward_connected_layer_gpu(state_z_layer, s);
|
| | | forward_connected_layer_gpu(state_r_layer, s);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_connected_layer_gpu(input_z_layer, s);
|
| | | forward_connected_layer_gpu(input_r_layer, s);
|
| | | forward_connected_layer_gpu(input_h_layer, s);
|
| | |
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
|
| | |
|
| | | activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
|
| | |
|
| | | s.input = l.forgot_state_gpu;
|
| | | forward_connected_layer_gpu(state_h_layer, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
|
| | |
|
| | | #ifdef USET
|
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
|
| | | #else
|
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | #endif
|
| | |
|
| | | weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output_gpu += l.outputs*l.batch;
|
| | | increment_layer(&input_z_layer, 1);
|
| | | increment_layer(&input_r_layer, 1);
|
| | | increment_layer(&input_h_layer, 1);
|
| | |
|
| | | increment_layer(&state_z_layer, 1);
|
| | | increment_layer(&state_r_layer, 1);
|
| | | increment_layer(&state_h_layer, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_gru_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = {0};
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer input_z_layer = *(l.input_z_layer);
|
| | | layer input_r_layer = *(l.input_r_layer);
|
| | | layer input_h_layer = *(l.input_h_layer);
|
| | |
|
| | | layer state_z_layer = *(l.state_z_layer);
|
| | | layer state_r_layer = *(l.state_r_layer);
|
| | | layer state_h_layer = *(l.state_h_layer);
|
| | |
|
| | | increment_layer(&input_z_layer, l.steps - 1);
|
| | | increment_layer(&input_r_layer, l.steps - 1);
|
| | | increment_layer(&input_h_layer, l.steps - 1);
|
| | |
|
| | | increment_layer(&state_z_layer, l.steps - 1);
|
| | | increment_layer(&state_r_layer, l.steps - 1);
|
| | | increment_layer(&state_h_layer, l.steps - 1);
|
| | |
|
| | | state.input += l.inputs*l.batch*(l.steps-1);
|
| | | if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1);
|
| | | l.output_gpu += l.outputs*l.batch*(l.steps-1);
|
| | | l.delta_gpu += l.outputs*l.batch*(l.steps-1);
|
| | | for (i = l.steps-1; i >= 0; --i) {
|
| | | if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1);
|
| | | float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
|
| | |
|
| | | activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
|
| | |
|
| | | #ifdef USET
|
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
|
| | | #else
|
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | #endif
|
| | |
|
| | | weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu);
|
| | |
|
| | | #ifdef USET
|
| | | gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu);
|
| | | #else
|
| | | gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu);
|
| | | #endif
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
|
| | | fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1);
|
| | |
|
| | | s.input = l.forgot_state_gpu;
|
| | | s.delta = l.forgot_delta_gpu;
|
| | |
|
| | | backward_connected_layer_gpu(state_h_layer, s);
|
| | | if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu);
|
| | | mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu);
|
| | |
|
| | | gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1);
|
| | |
|
| | | gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1);
|
| | |
|
| | | s.input = l.prev_state_gpu;
|
| | | s.delta = prev_delta_gpu;
|
| | |
|
| | | backward_connected_layer_gpu(state_r_layer, s);
|
| | | backward_connected_layer_gpu(state_z_layer, s);
|
| | |
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | |
|
| | | backward_connected_layer_gpu(input_h_layer, s);
|
| | | backward_connected_layer_gpu(input_r_layer, s);
|
| | | backward_connected_layer_gpu(input_z_layer, s);
|
| | |
|
| | |
|
| | | state.input -= l.inputs*l.batch;
|
| | | if(state.delta) state.delta -= l.inputs*l.batch;
|
| | | l.output_gpu -= l.outputs*l.batch;
|
| | | l.delta_gpu -= l.outputs*l.batch;
|
| | | increment_layer(&input_z_layer, -1);
|
| | | increment_layer(&input_r_layer, -1);
|
| | | increment_layer(&input_h_layer, -1);
|
| | |
|
| | | increment_layer(&state_z_layer, -1);
|
| | | increment_layer(&state_r_layer, -1);
|
| | | increment_layer(&state_h_layer, -1);
|
| | | }
|
| | | }
|
| | | #endif
|
| | | #include "gru_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | static void increment_layer(layer *l, int steps) |
| | | { |
| | | int num = l->outputs*l->batch*steps; |
| | | l->output += num; |
| | | l->delta += num; |
| | | l->x += num; |
| | | l->x_norm += num; |
| | | |
| | | #ifdef GPU |
| | | l->output_gpu += num; |
| | | l->delta_gpu += num; |
| | | l->x_gpu += num; |
| | | l->x_norm_gpu += num; |
| | | #endif |
| | | } |
| | | |
| | | layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) |
| | | { |
| | | fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | batch = batch / steps; |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.batch = batch; |
| | | l.type = GRU; |
| | | l.steps = steps; |
| | | l.inputs = inputs; |
| | | |
| | | l.input_z_layer = (layer*)xcalloc(1,sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.input_z_layer->batch = batch; |
| | | |
| | | l.state_z_layer = (layer*)xcalloc(1,sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.state_z_layer->batch = batch; |
| | | |
| | | |
| | | |
| | | l.input_r_layer = (layer*)xcalloc(1,sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.input_r_layer->batch = batch; |
| | | |
| | | l.state_r_layer = (layer*)xcalloc(1,sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.state_r_layer->batch = batch; |
| | | |
| | | |
| | | |
| | | l.input_h_layer = (layer*)xcalloc(1,sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.input_h_layer->batch = batch; |
| | | |
| | | l.state_h_layer = (layer*)xcalloc(1,sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.state_h_layer->batch = batch; |
| | | |
| | | l.batch_normalize = batch_normalize; |
| | | |
| | | |
| | | l.outputs = outputs; |
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); |
| | | l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float)); |
| | | l.state = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | |
| | | l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | |
| | | l.forward = forward_gru_layer; |
| | | l.backward = backward_gru_layer; |
| | | l.update = update_gru_layer; |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_gru_layer_gpu; |
| | | l.backward_gpu = backward_gru_layer_gpu; |
| | | l.update_gpu = update_gru_layer_gpu; |
| | | |
| | | l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs); |
| | | l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs); |
| | | l.prev_state_gpu = cuda_make_array(l.output, batch*outputs); |
| | | l.state_gpu = cuda_make_array(l.output, batch*outputs); |
| | | l.output_gpu = cuda_make_array(l.output, batch*outputs*steps); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps); |
| | | l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs); |
| | | l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs); |
| | | l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs); |
| | | #endif |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); |
| | | } |
| | | |
| | | void forward_gru_layer(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer input_z_layer = *(l.input_z_layer); |
| | | layer input_r_layer = *(l.input_r_layer); |
| | | layer input_h_layer = *(l.input_h_layer); |
| | | |
| | | layer state_z_layer = *(l.state_z_layer); |
| | | layer state_r_layer = *(l.state_r_layer); |
| | | layer state_h_layer = *(l.state_h_layer); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1); |
| | | if(state.train) { |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); |
| | | copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = l.state; |
| | | forward_connected_layer(state_z_layer, s); |
| | | forward_connected_layer(state_r_layer, s); |
| | | |
| | | s.input = state.input; |
| | | forward_connected_layer(input_z_layer, s); |
| | | forward_connected_layer(input_r_layer, s); |
| | | forward_connected_layer(input_h_layer, s); |
| | | |
| | | |
| | | copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1); |
| | | |
| | | activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1); |
| | | mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1); |
| | | |
| | | s.input = l.forgot_state; |
| | | forward_connected_layer(state_h_layer, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1); |
| | | |
| | | #ifdef USET |
| | | activate_array(l.h_cpu, l.outputs*l.batch, TANH); |
| | | #else |
| | | activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC); |
| | | #endif |
| | | |
| | | weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | l.output += l.outputs*l.batch; |
| | | increment_layer(&input_z_layer, 1); |
| | | increment_layer(&input_r_layer, 1); |
| | | increment_layer(&input_h_layer, 1); |
| | | |
| | | increment_layer(&state_z_layer, 1); |
| | | increment_layer(&state_r_layer, 1); |
| | | increment_layer(&state_h_layer, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_gru_layer(layer l, network_state state) |
| | | { |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_gru_layer(layer l) |
| | | { |
| | | } |
| | | |
| | | void push_gru_layer(layer l) |
| | | { |
| | | } |
| | | |
| | | void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) |
| | | { |
| | | update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay, loss_scale); |
| | | } |
| | | |
| | | void forward_gru_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer input_z_layer = *(l.input_z_layer); |
| | | layer input_r_layer = *(l.input_r_layer); |
| | | layer input_h_layer = *(l.input_h_layer); |
| | | |
| | | layer state_z_layer = *(l.state_z_layer); |
| | | layer state_r_layer = *(l.state_r_layer); |
| | | layer state_h_layer = *(l.state_h_layer); |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1); |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1); |
| | | if(state.train) { |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = l.state_gpu; |
| | | forward_connected_layer_gpu(state_z_layer, s); |
| | | forward_connected_layer_gpu(state_r_layer, s); |
| | | |
| | | s.input = state.input; |
| | | forward_connected_layer_gpu(input_z_layer, s); |
| | | forward_connected_layer_gpu(input_r_layer, s); |
| | | forward_connected_layer_gpu(input_h_layer, s); |
| | | |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); |
| | | |
| | | activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); |
| | | |
| | | s.input = l.forgot_state_gpu; |
| | | forward_connected_layer_gpu(state_h_layer, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); |
| | | |
| | | #ifdef USET |
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); |
| | | #else |
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); |
| | | #endif |
| | | |
| | | weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | l.output_gpu += l.outputs*l.batch; |
| | | increment_layer(&input_z_layer, 1); |
| | | increment_layer(&input_r_layer, 1); |
| | | increment_layer(&input_h_layer, 1); |
| | | |
| | | increment_layer(&state_z_layer, 1); |
| | | increment_layer(&state_r_layer, 1); |
| | | increment_layer(&state_h_layer, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_gru_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = {0}; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer input_z_layer = *(l.input_z_layer); |
| | | layer input_r_layer = *(l.input_r_layer); |
| | | layer input_h_layer = *(l.input_h_layer); |
| | | |
| | | layer state_z_layer = *(l.state_z_layer); |
| | | layer state_r_layer = *(l.state_r_layer); |
| | | layer state_h_layer = *(l.state_h_layer); |
| | | |
| | | increment_layer(&input_z_layer, l.steps - 1); |
| | | increment_layer(&input_r_layer, l.steps - 1); |
| | | increment_layer(&input_h_layer, l.steps - 1); |
| | | |
| | | increment_layer(&state_z_layer, l.steps - 1); |
| | | increment_layer(&state_r_layer, l.steps - 1); |
| | | increment_layer(&state_h_layer, l.steps - 1); |
| | | |
| | | state.input += l.inputs*l.batch*(l.steps-1); |
| | | if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1); |
| | | l.output_gpu += l.outputs*l.batch*(l.steps-1); |
| | | l.delta_gpu += l.outputs*l.batch*(l.steps-1); |
| | | for (i = l.steps-1; i >= 0; --i) { |
| | | if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); |
| | | float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); |
| | | |
| | | activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); |
| | | |
| | | #ifdef USET |
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); |
| | | #else |
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); |
| | | #endif |
| | | |
| | | weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu); |
| | | |
| | | #ifdef USET |
| | | gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu); |
| | | #else |
| | | gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu); |
| | | #endif |
| | | |
| | | copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); |
| | | fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1); |
| | | |
| | | s.input = l.forgot_state_gpu; |
| | | s.delta = l.forgot_delta_gpu; |
| | | |
| | | backward_connected_layer_gpu(state_h_layer, s); |
| | | if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu); |
| | | mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu); |
| | | |
| | | gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu); |
| | | copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1); |
| | | |
| | | gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu); |
| | | copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1); |
| | | |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = prev_delta_gpu; |
| | | |
| | | backward_connected_layer_gpu(state_r_layer, s); |
| | | backward_connected_layer_gpu(state_z_layer, s); |
| | | |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | |
| | | backward_connected_layer_gpu(input_h_layer, s); |
| | | backward_connected_layer_gpu(input_r_layer, s); |
| | | backward_connected_layer_gpu(input_z_layer, s); |
| | | |
| | | |
| | | state.input -= l.inputs*l.batch; |
| | | if(state.delta) state.delta -= l.inputs*l.batch; |
| | | l.output_gpu -= l.outputs*l.batch; |
| | | l.delta_gpu -= l.outputs*l.batch; |
| | | increment_layer(&input_z_layer, -1); |
| | | increment_layer(&input_r_layer, -1); |
| | | increment_layer(&input_h_layer, -1); |
| | | |
| | | increment_layer(&state_z_layer, -1); |
| | | increment_layer(&state_r_layer, -1); |
| | | increment_layer(&state_h_layer, -1); |
| | | } |
| | | } |
| | | #endif |