| | |
| | | #include "lstm_layer.h"
|
| | | #include "connected_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include "gemm.h"
|
| | |
|
| | | #include <math.h>
|
| | | #include <stdio.h>
|
| | | #include <stdlib.h>
|
| | | #include <string.h>
|
| | |
|
| | | static void increment_layer(layer *l, int steps)
|
| | | {
|
| | | int num = l->outputs*l->batch*steps;
|
| | | l->output += num;
|
| | | l->delta += num;
|
| | | l->x += num;
|
| | | l->x_norm += num;
|
| | |
|
| | | #ifdef GPU
|
| | | l->output_gpu += num;
|
| | | l->delta_gpu += num;
|
| | | l->x_gpu += num;
|
| | | l->x_norm_gpu += num;
|
| | | #endif
|
| | | }
|
| | |
|
| | | layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
|
| | | {
|
| | | fprintf(stderr, "LSTM Layer: %d inputs, %d outputs\n", inputs, outputs);
|
| | | batch = batch / steps;
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.batch = batch;
|
| | | l.type = LSTM;
|
| | | l.steps = steps;
|
| | | l.inputs = inputs;
|
| | | l.out_w = 1;
|
| | | l.out_h = 1;
|
| | | l.out_c = outputs;
|
| | |
|
| | | l.uf = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.uf) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.uf->batch = batch;
|
| | | if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size;
|
| | |
|
| | | l.ui = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.ui) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.ui->batch = batch;
|
| | | if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size;
|
| | |
|
| | | l.ug = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.ug) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.ug->batch = batch;
|
| | | if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size;
|
| | |
|
| | | l.uo = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.uo) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
|
| | | l.uo->batch = batch;
|
| | | if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size;
|
| | |
|
| | | l.wf = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.wf) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.wf->batch = batch;
|
| | | if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size;
|
| | |
|
| | | l.wi = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.wi) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.wi->batch = batch;
|
| | | if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size;
|
| | |
|
| | | l.wg = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.wg) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.wg->batch = batch;
|
| | | if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size;
|
| | |
|
| | | l.wo = (layer*)xcalloc(1, sizeof(layer));
|
| | | fprintf(stderr, "\t\t");
|
| | | *(l.wo) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
|
| | | l.wo->batch = batch;
|
| | | if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size;
|
| | |
|
| | | l.batch_normalize = batch_normalize;
|
| | | l.outputs = outputs;
|
| | |
|
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
|
| | | l.state = (float*)xcalloc(outputs * batch, sizeof(float));
|
| | |
|
| | | l.forward = forward_lstm_layer;
|
| | | l.update = update_lstm_layer;
|
| | | l.backward = backward_lstm_layer;
|
| | |
|
| | | l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float));
|
| | |
|
| | | l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | | l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_lstm_layer_gpu;
|
| | | l.backward_gpu = backward_lstm_layer_gpu;
|
| | | l.update_gpu = update_lstm_layer_gpu;
|
| | |
|
| | | //l.state_gpu = cuda_make_array(l.state, batch*l.outputs);
|
| | |
|
| | | l.output_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | | l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps);
|
| | |
|
| | | l.prev_state_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.prev_cell_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.cell_gpu = cuda_make_array(0, batch*outputs*steps);
|
| | |
|
| | | l.f_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.i_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.g_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.o_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.c_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.h_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.temp_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.temp2_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.temp3_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.dc_gpu = cuda_make_array(0, batch*outputs);
|
| | | l.dh_gpu = cuda_make_array(0, batch*outputs);
|
| | | #ifdef CUDNN
|
| | | /*
|
| | | cudnnSetTensor4dDescriptor(l.wf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wf->out_c, l.wf->out_h, l.wf->out_w);
|
| | | cudnnSetTensor4dDescriptor(l.wi->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wi->out_c, l.wi->out_h, l.wi->out_w);
|
| | | cudnnSetTensor4dDescriptor(l.wg->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wg->out_c, l.wg->out_h, l.wg->out_w);
|
| | | cudnnSetTensor4dDescriptor(l.wo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wo->out_c, l.wo->out_h, l.wo->out_w);
|
| | |
|
| | | cudnnSetTensor4dDescriptor(l.uf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uf->out_c, l.uf->out_h, l.uf->out_w);
|
| | | cudnnSetTensor4dDescriptor(l.ui->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ui->out_c, l.ui->out_h, l.ui->out_w);
|
| | | cudnnSetTensor4dDescriptor(l.ug->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ug->out_c, l.ug->out_h, l.ug->out_w);
|
| | | cudnnSetTensor4dDescriptor(l.uo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uo->out_c, l.uo->out_h, l.uo->out_w);
|
| | | */
|
| | | #endif
|
| | |
|
| | | #endif
|
| | |
|
| | | return l;
|
| | | }
|
| | |
|
| | | void update_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
| | | {
|
| | | update_connected_layer(*(l.wf), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.wi), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.wg), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.wo), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.uf), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.ui), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.ug), batch, learning_rate, momentum, decay);
|
| | | update_connected_layer(*(l.uo), batch, learning_rate, momentum, decay);
|
| | | }
|
| | |
|
| | | void forward_lstm_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1);
|
| | |
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1);
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1);
|
| | | if (state.train) {
|
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i) {
|
| | | s.input = l.h_cpu;
|
| | | forward_connected_layer(wf, s);
|
| | | forward_connected_layer(wi, s);
|
| | | forward_connected_layer(wg, s);
|
| | | forward_connected_layer(wo, s);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_connected_layer(uf, s);
|
| | | forward_connected_layer(ui, s);
|
| | | forward_connected_layer(ug, s);
|
| | | forward_connected_layer(uo, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1);
|
| | |
|
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH);
|
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1);
|
| | | activate_array(l.h_cpu, l.outputs*l.batch, TANH);
|
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output += l.outputs*l.batch;
|
| | | l.cell_cpu += l.outputs*l.batch;
|
| | |
|
| | | increment_layer(&wf, 1);
|
| | | increment_layer(&wi, 1);
|
| | | increment_layer(&wg, 1);
|
| | | increment_layer(&wo, 1);
|
| | |
|
| | | increment_layer(&uf, 1);
|
| | | increment_layer(&ui, 1);
|
| | | increment_layer(&ug, 1);
|
| | | increment_layer(&uo, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_lstm_layer(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | increment_layer(&wf, l.steps - 1);
|
| | | increment_layer(&wi, l.steps - 1);
|
| | | increment_layer(&wg, l.steps - 1);
|
| | | increment_layer(&wo, l.steps - 1);
|
| | |
|
| | | increment_layer(&uf, l.steps - 1);
|
| | | increment_layer(&ui, l.steps - 1);
|
| | | increment_layer(&ug, l.steps - 1);
|
| | | increment_layer(&uo, l.steps - 1);
|
| | |
|
| | | state.input += l.inputs*l.batch*(l.steps - 1);
|
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1);
|
| | |
|
| | | l.output += l.outputs*l.batch*(l.steps - 1);
|
| | | l.cell_cpu += l.outputs*l.batch*(l.steps - 1);
|
| | | l.delta += l.outputs*l.batch*(l.steps - 1);
|
| | |
|
| | | for (i = l.steps - 1; i >= 0; --i) {
|
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1);
|
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1);
|
| | |
|
| | | l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch;
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1);
|
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1);
|
| | |
|
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH);
|
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1);
|
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1);
|
| | |
|
| | | gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu);
|
| | | axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1);
|
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH);
|
| | | mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu);
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | s.delta = l.dh_cpu;
|
| | | backward_connected_layer(wo, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer(uo, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu);
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | s.delta = l.dh_cpu;
|
| | | backward_connected_layer(wg, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer(ug, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu);
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | s.delta = l.dh_cpu;
|
| | | backward_connected_layer(wi, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer(ui, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1);
|
| | | gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu);
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1);
|
| | | s.input = l.prev_state_cpu;
|
| | | s.delta = l.dh_cpu;
|
| | | backward_connected_layer(wf, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer(uf, s);
|
| | |
|
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1);
|
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1);
|
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1);
|
| | |
|
| | | state.input -= l.inputs*l.batch;
|
| | | if (state.delta) state.delta -= l.inputs*l.batch;
|
| | | l.output -= l.outputs*l.batch;
|
| | | l.cell_cpu -= l.outputs*l.batch;
|
| | | l.delta -= l.outputs*l.batch;
|
| | |
|
| | | increment_layer(&wf, -1);
|
| | | increment_layer(&wi, -1);
|
| | | increment_layer(&wg, -1);
|
| | | increment_layer(&wo, -1);
|
| | |
|
| | | increment_layer(&uf, -1);
|
| | | increment_layer(&ui, -1);
|
| | | increment_layer(&ug, -1);
|
| | | increment_layer(&uo, -1);
|
| | | }
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | | void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale)
|
| | | {
|
| | | update_connected_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale);
|
| | | update_connected_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale);
|
| | | }
|
| | |
|
| | | void forward_lstm_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1);
|
| | |
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1);
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1);
|
| | | if (state.train) {
|
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1);
|
| | | }
|
| | |
|
| | | for (i = 0; i < l.steps; ++i) {
|
| | | s.input = l.h_gpu;
|
| | | forward_connected_layer_gpu(wf, s);
|
| | | forward_connected_layer_gpu(wi, s);
|
| | | forward_connected_layer_gpu(wg, s);
|
| | | forward_connected_layer_gpu(wo, s);
|
| | |
|
| | | s.input = state.input;
|
| | | forward_connected_layer_gpu(uf, s);
|
| | | forward_connected_layer_gpu(ui, s);
|
| | | forward_connected_layer_gpu(ug, s);
|
| | | forward_connected_layer_gpu(uo, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1);
|
| | |
|
| | | activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH);
|
| | | activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.h_gpu, 1);
|
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
|
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.cell_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.output_gpu, 1);
|
| | |
|
| | | state.input += l.inputs*l.batch;
|
| | | l.output_gpu += l.outputs*l.batch;
|
| | | l.cell_gpu += l.outputs*l.batch;
|
| | |
|
| | | increment_layer(&wf, 1);
|
| | | increment_layer(&wi, 1);
|
| | | increment_layer(&wg, 1);
|
| | | increment_layer(&wo, 1);
|
| | |
|
| | | increment_layer(&uf, 1);
|
| | | increment_layer(&ui, 1);
|
| | | increment_layer(&ug, 1);
|
| | | increment_layer(&uo, 1);
|
| | | }
|
| | | }
|
| | |
|
| | | void backward_lstm_layer_gpu(layer l, network_state state)
|
| | | {
|
| | | network_state s = { 0 };
|
| | | s.train = state.train;
|
| | | s.workspace = state.workspace;
|
| | | int i;
|
| | | layer wf = *(l.wf);
|
| | | layer wi = *(l.wi);
|
| | | layer wg = *(l.wg);
|
| | | layer wo = *(l.wo);
|
| | |
|
| | | layer uf = *(l.uf);
|
| | | layer ui = *(l.ui);
|
| | | layer ug = *(l.ug);
|
| | | layer uo = *(l.uo);
|
| | |
|
| | | increment_layer(&wf, l.steps - 1);
|
| | | increment_layer(&wi, l.steps - 1);
|
| | | increment_layer(&wg, l.steps - 1);
|
| | | increment_layer(&wo, l.steps - 1);
|
| | |
|
| | | increment_layer(&uf, l.steps - 1);
|
| | | increment_layer(&ui, l.steps - 1);
|
| | | increment_layer(&ug, l.steps - 1);
|
| | | increment_layer(&uo, l.steps - 1);
|
| | |
|
| | | state.input += l.inputs*l.batch*(l.steps - 1);
|
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1);
|
| | |
|
| | | l.output_gpu += l.outputs*l.batch*(l.steps - 1);
|
| | | l.cell_gpu += l.outputs*l.batch*(l.steps - 1);
|
| | | l.delta_gpu += l.outputs*l.batch*(l.steps - 1);
|
| | |
|
| | | for (i = l.steps - 1; i >= 0; --i) {
|
| | | if (i != 0) copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, 1, l.prev_cell_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.cell_gpu, 1, l.c_gpu, 1);
|
| | | if (i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.h_gpu, 1);
|
| | |
|
| | | l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1);
|
| | |
|
| | | activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC);
|
| | | activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH);
|
| | | activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, l.temp3_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1);
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp2_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1);
|
| | |
|
| | | gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu);
|
| | | axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1);
|
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH);
|
| | | mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wo.delta_gpu, 1);
|
| | | s.input = l.prev_state_gpu;
|
| | | s.delta = l.dh_gpu;
|
| | | backward_connected_layer_gpu(wo, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uo.delta_gpu, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer_gpu(uo, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wg.delta_gpu, 1);
|
| | | s.input = l.prev_state_gpu;
|
| | | s.delta = l.dh_gpu;
|
| | | backward_connected_layer_gpu(wg, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ug.delta_gpu, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer_gpu(ug, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wi.delta_gpu, 1);
|
| | | s.input = l.prev_state_gpu;
|
| | | s.delta = l.dh_gpu;
|
| | | backward_connected_layer_gpu(wi, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ui.delta_gpu, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer_gpu(ui, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1);
|
| | | gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu);
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wf.delta_gpu, 1);
|
| | | s.input = l.prev_state_gpu;
|
| | | s.delta = l.dh_gpu;
|
| | | backward_connected_layer_gpu(wf, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uf.delta_gpu, 1);
|
| | | s.input = state.input;
|
| | | s.delta = state.delta;
|
| | | backward_connected_layer_gpu(uf, s);
|
| | |
|
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1);
|
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1);
|
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, l.dc_gpu, 1);
|
| | |
|
| | | state.input -= l.inputs*l.batch;
|
| | | if (state.delta) state.delta -= l.inputs*l.batch;
|
| | | l.output_gpu -= l.outputs*l.batch;
|
| | | l.cell_gpu -= l.outputs*l.batch;
|
| | | l.delta_gpu -= l.outputs*l.batch;
|
| | |
|
| | | increment_layer(&wf, -1);
|
| | | increment_layer(&wi, -1);
|
| | | increment_layer(&wg, -1);
|
| | | increment_layer(&wo, -1);
|
| | |
|
| | | increment_layer(&uf, -1);
|
| | | increment_layer(&ui, -1);
|
| | | increment_layer(&ug, -1);
|
| | | increment_layer(&uo, -1);
|
| | | }
|
| | | }
|
| | | #endif
|
| | | #include "lstm_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | static void increment_layer(layer *l, int steps) |
| | | { |
| | | int num = l->outputs*l->batch*steps; |
| | | l->output += num; |
| | | l->delta += num; |
| | | l->x += num; |
| | | l->x_norm += num; |
| | | |
| | | #ifdef GPU |
| | | l->output_gpu += num; |
| | | l->delta_gpu += num; |
| | | l->x_gpu += num; |
| | | l->x_norm_gpu += num; |
| | | #endif |
| | | } |
| | | |
| | | layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) |
| | | { |
| | | fprintf(stderr, "LSTM Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | batch = batch / steps; |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.batch = batch; |
| | | l.type = LSTM; |
| | | l.steps = steps; |
| | | l.inputs = inputs; |
| | | l.out_w = 1; |
| | | l.out_h = 1; |
| | | l.out_c = outputs; |
| | | |
| | | l.uf = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.uf) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.uf->batch = batch; |
| | | if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size; |
| | | |
| | | l.ui = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.ui) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.ui->batch = batch; |
| | | if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size; |
| | | |
| | | l.ug = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.ug) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.ug->batch = batch; |
| | | if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size; |
| | | |
| | | l.uo = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.uo) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); |
| | | l.uo->batch = batch; |
| | | if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size; |
| | | |
| | | l.wf = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.wf) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.wf->batch = batch; |
| | | if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; |
| | | |
| | | l.wi = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.wi) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.wi->batch = batch; |
| | | if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size; |
| | | |
| | | l.wg = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.wg) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.wg->batch = batch; |
| | | if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size; |
| | | |
| | | l.wo = (layer*)xcalloc(1, sizeof(layer)); |
| | | fprintf(stderr, "\t\t"); |
| | | *(l.wo) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); |
| | | l.wo->batch = batch; |
| | | if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size; |
| | | |
| | | l.batch_normalize = batch_normalize; |
| | | l.outputs = outputs; |
| | | |
| | | l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); |
| | | l.state = (float*)xcalloc(outputs * batch, sizeof(float)); |
| | | |
| | | l.forward = forward_lstm_layer; |
| | | l.update = update_lstm_layer; |
| | | l.backward = backward_lstm_layer; |
| | | |
| | | l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float)); |
| | | |
| | | l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_lstm_layer_gpu; |
| | | l.backward_gpu = backward_lstm_layer_gpu; |
| | | l.update_gpu = update_lstm_layer_gpu; |
| | | |
| | | //l.state_gpu = cuda_make_array(l.state, batch*l.outputs); |
| | | |
| | | l.output_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps); |
| | | |
| | | l.prev_state_gpu = cuda_make_array(0, batch*outputs); |
| | | l.prev_cell_gpu = cuda_make_array(0, batch*outputs); |
| | | l.cell_gpu = cuda_make_array(0, batch*outputs*steps); |
| | | |
| | | l.f_gpu = cuda_make_array(0, batch*outputs); |
| | | l.i_gpu = cuda_make_array(0, batch*outputs); |
| | | l.g_gpu = cuda_make_array(0, batch*outputs); |
| | | l.o_gpu = cuda_make_array(0, batch*outputs); |
| | | l.c_gpu = cuda_make_array(0, batch*outputs); |
| | | l.h_gpu = cuda_make_array(0, batch*outputs); |
| | | l.temp_gpu = cuda_make_array(0, batch*outputs); |
| | | l.temp2_gpu = cuda_make_array(0, batch*outputs); |
| | | l.temp3_gpu = cuda_make_array(0, batch*outputs); |
| | | l.dc_gpu = cuda_make_array(0, batch*outputs); |
| | | l.dh_gpu = cuda_make_array(0, batch*outputs); |
| | | #ifdef CUDNN |
| | | /* |
| | | cudnnSetTensor4dDescriptor(l.wf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wf->out_c, l.wf->out_h, l.wf->out_w); |
| | | cudnnSetTensor4dDescriptor(l.wi->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wi->out_c, l.wi->out_h, l.wi->out_w); |
| | | cudnnSetTensor4dDescriptor(l.wg->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wg->out_c, l.wg->out_h, l.wg->out_w); |
| | | cudnnSetTensor4dDescriptor(l.wo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wo->out_c, l.wo->out_h, l.wo->out_w); |
| | | |
| | | cudnnSetTensor4dDescriptor(l.uf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uf->out_c, l.uf->out_h, l.uf->out_w); |
| | | cudnnSetTensor4dDescriptor(l.ui->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ui->out_c, l.ui->out_h, l.ui->out_w); |
| | | cudnnSetTensor4dDescriptor(l.ug->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ug->out_c, l.ug->out_h, l.ug->out_w); |
| | | cudnnSetTensor4dDescriptor(l.uo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uo->out_c, l.uo->out_h, l.uo->out_w); |
| | | */ |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | | return l; |
| | | } |
| | | |
| | | void update_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | update_connected_layer(*(l.wf), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.wi), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.wg), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.wo), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.uf), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.ui), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.ug), batch, learning_rate, momentum, decay); |
| | | update_connected_layer(*(l.uo), batch, learning_rate, momentum, decay); |
| | | } |
| | | |
| | | void forward_lstm_layer(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1); |
| | | |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1); |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1); |
| | | if (state.train) { |
| | | fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = l.h_cpu; |
| | | forward_connected_layer(wf, s); |
| | | forward_connected_layer(wi, s); |
| | | forward_connected_layer(wg, s); |
| | | forward_connected_layer(wo, s); |
| | | |
| | | s.input = state.input; |
| | | forward_connected_layer(uf, s); |
| | | forward_connected_layer(ui, s); |
| | | forward_connected_layer(ug, s); |
| | | forward_connected_layer(uo, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); |
| | | |
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH); |
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1); |
| | | activate_array(l.h_cpu, l.outputs*l.batch, TANH); |
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | l.output += l.outputs*l.batch; |
| | | l.cell_cpu += l.outputs*l.batch; |
| | | |
| | | increment_layer(&wf, 1); |
| | | increment_layer(&wi, 1); |
| | | increment_layer(&wg, 1); |
| | | increment_layer(&wo, 1); |
| | | |
| | | increment_layer(&uf, 1); |
| | | increment_layer(&ui, 1); |
| | | increment_layer(&ug, 1); |
| | | increment_layer(&uo, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_lstm_layer(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | increment_layer(&wf, l.steps - 1); |
| | | increment_layer(&wi, l.steps - 1); |
| | | increment_layer(&wg, l.steps - 1); |
| | | increment_layer(&wo, l.steps - 1); |
| | | |
| | | increment_layer(&uf, l.steps - 1); |
| | | increment_layer(&ui, l.steps - 1); |
| | | increment_layer(&ug, l.steps - 1); |
| | | increment_layer(&uo, l.steps - 1); |
| | | |
| | | state.input += l.inputs*l.batch*(l.steps - 1); |
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); |
| | | |
| | | l.output += l.outputs*l.batch*(l.steps - 1); |
| | | l.cell_cpu += l.outputs*l.batch*(l.steps - 1); |
| | | l.delta += l.outputs*l.batch*(l.steps - 1); |
| | | |
| | | for (i = l.steps - 1; i >= 0; --i) { |
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1); |
| | | if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1); |
| | | |
| | | l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch; |
| | | |
| | | copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); |
| | | axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); |
| | | |
| | | activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array(l.g_cpu, l.outputs*l.batch, TANH); |
| | | activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); |
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1); |
| | | |
| | | gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu); |
| | | axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); |
| | | activate_array(l.temp_cpu, l.outputs*l.batch, TANH); |
| | | mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | s.delta = l.dh_cpu; |
| | | backward_connected_layer(wo, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer(uo, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu); |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | s.delta = l.dh_cpu; |
| | | backward_connected_layer(wg, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer(ug, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | s.delta = l.dh_cpu; |
| | | backward_connected_layer(wi, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer(ui, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1); |
| | | gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1); |
| | | s.input = l.prev_state_cpu; |
| | | s.delta = l.dh_cpu; |
| | | backward_connected_layer(wf, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer(uf, s); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); |
| | | mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1); |
| | | copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1); |
| | | |
| | | state.input -= l.inputs*l.batch; |
| | | if (state.delta) state.delta -= l.inputs*l.batch; |
| | | l.output -= l.outputs*l.batch; |
| | | l.cell_cpu -= l.outputs*l.batch; |
| | | l.delta -= l.outputs*l.batch; |
| | | |
| | | increment_layer(&wf, -1); |
| | | increment_layer(&wi, -1); |
| | | increment_layer(&wg, -1); |
| | | increment_layer(&wo, -1); |
| | | |
| | | increment_layer(&uf, -1); |
| | | increment_layer(&ui, -1); |
| | | increment_layer(&ug, -1); |
| | | increment_layer(&uo, -1); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) |
| | | { |
| | | update_connected_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale); |
| | | update_connected_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale); |
| | | } |
| | | |
| | | void forward_lstm_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1); |
| | | |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1); |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1); |
| | | if (state.train) { |
| | | fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); |
| | | } |
| | | |
| | | for (i = 0; i < l.steps; ++i) { |
| | | s.input = l.h_gpu; |
| | | forward_connected_layer_gpu(wf, s); |
| | | forward_connected_layer_gpu(wi, s); |
| | | forward_connected_layer_gpu(wg, s); |
| | | forward_connected_layer_gpu(wo, s); |
| | | |
| | | s.input = state.input; |
| | | forward_connected_layer_gpu(uf, s); |
| | | forward_connected_layer_gpu(ui, s); |
| | | forward_connected_layer_gpu(ug, s); |
| | | forward_connected_layer_gpu(uo, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); |
| | | |
| | | activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); |
| | | activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.h_gpu, 1); |
| | | activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); |
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.cell_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.output_gpu, 1); |
| | | |
| | | state.input += l.inputs*l.batch; |
| | | l.output_gpu += l.outputs*l.batch; |
| | | l.cell_gpu += l.outputs*l.batch; |
| | | |
| | | increment_layer(&wf, 1); |
| | | increment_layer(&wi, 1); |
| | | increment_layer(&wg, 1); |
| | | increment_layer(&wo, 1); |
| | | |
| | | increment_layer(&uf, 1); |
| | | increment_layer(&ui, 1); |
| | | increment_layer(&ug, 1); |
| | | increment_layer(&uo, 1); |
| | | } |
| | | } |
| | | |
| | | void backward_lstm_layer_gpu(layer l, network_state state) |
| | | { |
| | | network_state s = { 0 }; |
| | | s.train = state.train; |
| | | s.workspace = state.workspace; |
| | | int i; |
| | | layer wf = *(l.wf); |
| | | layer wi = *(l.wi); |
| | | layer wg = *(l.wg); |
| | | layer wo = *(l.wo); |
| | | |
| | | layer uf = *(l.uf); |
| | | layer ui = *(l.ui); |
| | | layer ug = *(l.ug); |
| | | layer uo = *(l.uo); |
| | | |
| | | increment_layer(&wf, l.steps - 1); |
| | | increment_layer(&wi, l.steps - 1); |
| | | increment_layer(&wg, l.steps - 1); |
| | | increment_layer(&wo, l.steps - 1); |
| | | |
| | | increment_layer(&uf, l.steps - 1); |
| | | increment_layer(&ui, l.steps - 1); |
| | | increment_layer(&ug, l.steps - 1); |
| | | increment_layer(&uo, l.steps - 1); |
| | | |
| | | state.input += l.inputs*l.batch*(l.steps - 1); |
| | | if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); |
| | | |
| | | l.output_gpu += l.outputs*l.batch*(l.steps - 1); |
| | | l.cell_gpu += l.outputs*l.batch*(l.steps - 1); |
| | | l.delta_gpu += l.outputs*l.batch*(l.steps - 1); |
| | | |
| | | for (i = l.steps - 1; i >= 0; --i) { |
| | | if (i != 0) copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, 1, l.prev_cell_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.cell_gpu, 1, l.c_gpu, 1); |
| | | if (i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.h_gpu, 1); |
| | | |
| | | l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); |
| | | axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); |
| | | |
| | | activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); |
| | | activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); |
| | | activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, l.temp3_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); |
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp2_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); |
| | | |
| | | gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu); |
| | | axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); |
| | | activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); |
| | | mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wo.delta_gpu, 1); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.dh_gpu; |
| | | backward_connected_layer_gpu(wo, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uo.delta_gpu, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer_gpu(uo, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu); |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wg.delta_gpu, 1); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.dh_gpu; |
| | | backward_connected_layer_gpu(wg, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ug.delta_gpu, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer_gpu(ug, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wi.delta_gpu, 1); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.dh_gpu; |
| | | backward_connected_layer_gpu(wi, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ui.delta_gpu, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer_gpu(ui, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1); |
| | | gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wf.delta_gpu, 1); |
| | | s.input = l.prev_state_gpu; |
| | | s.delta = l.dh_gpu; |
| | | backward_connected_layer_gpu(wf, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uf.delta_gpu, 1); |
| | | s.input = state.input; |
| | | s.delta = state.delta; |
| | | backward_connected_layer_gpu(uf, s); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); |
| | | mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, l.dc_gpu, 1); |
| | | |
| | | state.input -= l.inputs*l.batch; |
| | | if (state.delta) state.delta -= l.inputs*l.batch; |
| | | l.output_gpu -= l.outputs*l.batch; |
| | | l.cell_gpu -= l.outputs*l.batch; |
| | | l.delta_gpu -= l.outputs*l.batch; |
| | | |
| | | increment_layer(&wf, -1); |
| | | increment_layer(&wi, -1); |
| | | increment_layer(&wg, -1); |
| | | increment_layer(&wo, -1); |
| | | |
| | | increment_layer(&uf, -1); |
| | | increment_layer(&ui, -1); |
| | | increment_layer(&ug, -1); |
| | | increment_layer(&uo, -1); |
| | | } |
| | | } |
| | | #endif |