| | |
| | | // Oh boy, why am I about to do this....
|
| | | #ifndef NETWORK_H
|
| | | #define NETWORK_H
|
| | | #include "darknet.h"
|
| | |
|
| | | #include <stdint.h>
|
| | | #include "layer.h"
|
| | |
|
| | |
|
| | | #include "image.h"
|
| | | #include "data.h"
|
| | | #include "tree.h"
|
| | |
|
| | | #ifdef __cplusplus
|
| | | extern "C" {
|
| | | #endif
|
| | | /*
|
| | | typedef enum {
|
| | | CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
|
| | | } learning_rate_policy;
|
| | |
|
| | | typedef struct network{
|
| | | float *workspace;
|
| | | int n;
|
| | | int batch;
|
| | | uint64_t *seen;
|
| | | float epoch;
|
| | | int subdivisions;
|
| | | float momentum;
|
| | | float decay;
|
| | | layer *layers;
|
| | | int outputs;
|
| | | float *output;
|
| | | learning_rate_policy policy;
|
| | |
|
| | | float learning_rate;
|
| | | float gamma;
|
| | | float scale;
|
| | | float power;
|
| | | int time_steps;
|
| | | int step;
|
| | | int max_batches;
|
| | | float *scales;
|
| | | int *steps;
|
| | | int num_steps;
|
| | | int burn_in;
|
| | | int cudnn_half;
|
| | |
|
| | | int adam;
|
| | | float B1;
|
| | | float B2;
|
| | | float eps;
|
| | |
|
| | | int inputs;
|
| | | int h, w, c;
|
| | | int max_crop;
|
| | | int min_crop;
|
| | | int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
|
| | | float angle;
|
| | | float aspect;
|
| | | float exposure;
|
| | | float saturation;
|
| | | float hue;
|
| | | int small_object;
|
| | |
|
| | | int gpu_index;
|
| | | tree *hierarchy;
|
| | |
|
| | | #ifdef GPU
|
| | | float *input_state_gpu;
|
| | |
|
| | | float **input_gpu;
|
| | | float **truth_gpu;
|
| | | float **input16_gpu;
|
| | | float **output16_gpu;
|
| | | size_t *max_input16_size;
|
| | | size_t *max_output16_size;
|
| | | int wait_stream;
|
| | | #endif
|
| | | } network;
|
| | |
|
| | |
|
| | | typedef struct network_state {
|
| | | float *truth;
|
| | | float *input;
|
| | | float *delta;
|
| | | float *workspace;
|
| | | int train;
|
| | | int index;
|
| | | network net;
|
| | | } network_state;
|
| | | */
|
| | |
|
| | | #ifdef GPU
|
| | | float train_networks(network *nets, int n, data d, int interval);
|
| | | void sync_nets(network *nets, int n, int interval);
|
| | | float train_network_datum_gpu(network net, float *x, float *y);
|
| | | float *network_predict_gpu(network net, float *input);
|
| | | float * get_network_output_gpu_layer(network net, int i);
|
| | | float * get_network_delta_gpu_layer(network net, int i);
|
| | | float *get_network_output_gpu(network net);
|
| | | void forward_network_gpu(network net, network_state state);
|
| | | void backward_network_gpu(network net, network_state state);
|
| | | void update_network_gpu(network net);
|
| | | void forward_backward_network_gpu(network net, float *x, float *y);
|
| | | #endif
|
| | |
|
| | | float get_current_seq_subdivisions(network net);
|
| | | int get_sequence_value(network net);
|
| | | float get_current_rate(network net);
|
| | | int get_current_batch(network net);
|
| | | int64_t get_current_iteration(network net);
|
| | | //void free_network(network net); // darknet.h
|
| | | void compare_networks(network n1, network n2, data d);
|
| | | char *get_layer_string(LAYER_TYPE a);
|
| | |
|
| | | network make_network(int n);
|
| | | void forward_network(network net, network_state state);
|
| | | void backward_network(network net, network_state state);
|
| | | void update_network(network net);
|
| | |
|
| | | float train_network(network net, data d);
|
| | | float train_network_waitkey(network net, data d, int wait_key);
|
| | | float train_network_batch(network net, data d, int n);
|
| | | float train_network_sgd(network net, data d, int n);
|
| | | float train_network_datum(network net, float *x, float *y);
|
| | |
|
| | | matrix network_predict_data(network net, data test);
|
| | | //LIB_API float *network_predict(network net, float *input);
|
| | | //LIB_API float *network_predict_ptr(network *net, float *input);
|
| | | float network_accuracy(network net, data d);
|
| | | float *network_accuracies(network net, data d, int n);
|
| | | float network_accuracy_multi(network net, data d, int n);
|
| | | void top_predictions(network net, int n, int *index);
|
| | | float *get_network_output(network net);
|
| | | float *get_network_output_layer(network net, int i);
|
| | | float *get_network_delta_layer(network net, int i);
|
| | | float *get_network_delta(network net);
|
| | | int get_network_output_size_layer(network net, int i);
|
| | | int get_network_output_size(network net);
|
| | | image get_network_image(network net);
|
| | | image get_network_image_layer(network net, int i);
|
| | | int get_predicted_class_network(network net);
|
| | | void print_network(network net);
|
| | | void visualize_network(network net);
|
| | | int resize_network(network *net, int w, int h);
|
| | | void set_batch_network(network *net, int b);
|
| | | int get_network_input_size(network net);
|
| | | float get_network_cost(network net);
|
| | | //LIB_API layer* get_network_layer(network* net, int i);
|
| | | //LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
|
| | | //LIB_API detection *make_network_boxes(network *net, float thresh, int *num);
|
| | | //LIB_API void free_detections(detection *dets, int n);
|
| | | //LIB_API void reset_rnn(network *net);
|
| | | //LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
|
| | | //LIB_API network *load_network(char *cfg, char *weights, int clear);
|
| | | //LIB_API float *network_predict_image(network *net, image im);
|
| | | //LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, int map_points, int letter_box, network *existing_net);
|
| | | //LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port);
|
| | | //LIB_API int network_width(network *net);
|
| | | //LIB_API int network_height(network *net);
|
| | | //LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
|
| | |
|
| | | int get_network_nuisance(network net);
|
| | | int get_network_background(network net);
|
| | | //LIB_API void fuse_conv_batchnorm(network net);
|
| | | //LIB_API void calculate_binary_weights(network net);
|
| | | network combine_train_valid_networks(network net_train, network net_map);
|
| | | void copy_weights_net(network net_train, network *net_map);
|
| | | void free_network_recurrent_state(network net);
|
| | | void randomize_network_recurrent_state(network net);
|
| | | void remember_network_recurrent_state(network net);
|
| | | void restore_network_recurrent_state(network net);
|
| | |
|
| | | #ifdef __cplusplus
|
| | | }
|
| | | #endif
|
| | |
|
| | | #endif
|
| | | // Oh boy, why am I about to do this.... |
| | | #ifndef NETWORK_H |
| | | #define NETWORK_H |
| | | #include "darknet.h" |
| | | |
| | | #include <stdint.h> |
| | | #include "layer.h" |
| | | |
| | | |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "tree.h" |
| | | |
| | | #ifdef __cplusplus |
| | | extern "C" { |
| | | #endif |
| | | /* |
| | | typedef enum { |
| | | CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM |
| | | } learning_rate_policy; |
| | | |
| | | typedef struct network{ |
| | | float *workspace; |
| | | int n; |
| | | int batch; |
| | | uint64_t *seen; |
| | | float epoch; |
| | | int subdivisions; |
| | | float momentum; |
| | | float decay; |
| | | layer *layers; |
| | | int outputs; |
| | | float *output; |
| | | learning_rate_policy policy; |
| | | |
| | | float learning_rate; |
| | | float gamma; |
| | | float scale; |
| | | float power; |
| | | int time_steps; |
| | | int step; |
| | | int max_batches; |
| | | float *scales; |
| | | int *steps; |
| | | int num_steps; |
| | | int burn_in; |
| | | int cudnn_half; |
| | | |
| | | int adam; |
| | | float B1; |
| | | float B2; |
| | | float eps; |
| | | |
| | | int inputs; |
| | | int h, w, c; |
| | | int max_crop; |
| | | int min_crop; |
| | | int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1) |
| | | float angle; |
| | | float aspect; |
| | | float exposure; |
| | | float saturation; |
| | | float hue; |
| | | int small_object; |
| | | |
| | | int gpu_index; |
| | | tree *hierarchy; |
| | | |
| | | #ifdef GPU |
| | | float *input_state_gpu; |
| | | |
| | | float **input_gpu; |
| | | float **truth_gpu; |
| | | float **input16_gpu; |
| | | float **output16_gpu; |
| | | size_t *max_input16_size; |
| | | size_t *max_output16_size; |
| | | int wait_stream; |
| | | #endif |
| | | } network; |
| | | |
| | | |
| | | typedef struct network_state { |
| | | float *truth; |
| | | float *input; |
| | | float *delta; |
| | | float *workspace; |
| | | int train; |
| | | int index; |
| | | network net; |
| | | } network_state; |
| | | */ |
| | | |
| | | #ifdef GPU |
| | | float train_networks(network *nets, int n, data d, int interval); |
| | | void sync_nets(network *nets, int n, int interval); |
| | | float train_network_datum_gpu(network net, float *x, float *y); |
| | | float *network_predict_gpu(network net, float *input); |
| | | float * get_network_output_gpu_layer(network net, int i); |
| | | float * get_network_delta_gpu_layer(network net, int i); |
| | | float *get_network_output_gpu(network net); |
| | | void forward_network_gpu(network net, network_state state); |
| | | void backward_network_gpu(network net, network_state state); |
| | | void update_network_gpu(network net); |
| | | void forward_backward_network_gpu(network net, float *x, float *y); |
| | | #endif |
| | | |
| | | float get_current_seq_subdivisions(network net); |
| | | int get_sequence_value(network net); |
| | | float get_current_rate(network net); |
| | | int get_current_batch(network net); |
| | | int64_t get_current_iteration(network net); |
| | | //void free_network(network net); // darknet.h |
| | | void compare_networks(network n1, network n2, data d); |
| | | char *get_layer_string(LAYER_TYPE a); |
| | | |
| | | network make_network(int n); |
| | | void forward_network(network net, network_state state); |
| | | void backward_network(network net, network_state state); |
| | | void update_network(network net); |
| | | |
| | | float train_network(network net, data d); |
| | | float train_network_waitkey(network net, data d, int wait_key); |
| | | float train_network_batch(network net, data d, int n); |
| | | float train_network_sgd(network net, data d, int n); |
| | | float train_network_datum(network net, float *x, float *y); |
| | | |
| | | matrix network_predict_data(network net, data test); |
| | | //LIB_API float *network_predict(network net, float *input); |
| | | //LIB_API float *network_predict_ptr(network *net, float *input); |
| | | float network_accuracy(network net, data d); |
| | | float *network_accuracies(network net, data d, int n); |
| | | float network_accuracy_multi(network net, data d, int n); |
| | | void top_predictions(network net, int n, int *index); |
| | | float *get_network_output(network net); |
| | | float *get_network_output_layer(network net, int i); |
| | | float *get_network_delta_layer(network net, int i); |
| | | float *get_network_delta(network net); |
| | | int get_network_output_size_layer(network net, int i); |
| | | int get_network_output_size(network net); |
| | | image get_network_image(network net); |
| | | image get_network_image_layer(network net, int i); |
| | | int get_predicted_class_network(network net); |
| | | void print_network(network net); |
| | | void visualize_network(network net); |
| | | int resize_network(network *net, int w, int h); |
| | | void set_batch_network(network *net, int b); |
| | | int get_network_input_size(network net); |
| | | float get_network_cost(network net); |
| | | //LIB_API layer* get_network_layer(network* net, int i); |
| | | //LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter); |
| | | //LIB_API detection *make_network_boxes(network *net, float thresh, int *num); |
| | | //LIB_API void free_detections(detection *dets, int n); |
| | | //LIB_API void reset_rnn(network *net); |
| | | //LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch); |
| | | //LIB_API network *load_network(char *cfg, char *weights, int clear); |
| | | //LIB_API float *network_predict_image(network *net, image im); |
| | | //LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, int map_points, int letter_box, network *existing_net); |
| | | //LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port); |
| | | //LIB_API int network_width(network *net); |
| | | //LIB_API int network_height(network *net); |
| | | //LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm); |
| | | |
| | | int get_network_nuisance(network net); |
| | | int get_network_background(network net); |
| | | //LIB_API void fuse_conv_batchnorm(network net); |
| | | //LIB_API void calculate_binary_weights(network net); |
| | | network combine_train_valid_networks(network net_train, network net_map); |
| | | void copy_weights_net(network net_train, network *net_map); |
| | | void free_network_recurrent_state(network net); |
| | | void randomize_network_recurrent_state(network net); |
| | | void remember_network_recurrent_state(network net); |
| | | void restore_network_recurrent_state(network net); |
| | | int is_ema_initialized(network net); |
| | | void ema_update(network net, float ema_alpha); |
| | | void ema_apply(network net); |
| | | void reject_similar_weights(network net, float sim_threshold); |
| | | |
| | | |
| | | #ifdef __cplusplus |
| | | } |
| | | #endif |
| | | |
| | | #endif |