| | |
| | | #include "network.h"
|
| | | #include "cost_layer.h"
|
| | | #include "utils.h"
|
| | | #include "blas.h"
|
| | | #include "parser.h"
|
| | |
|
| | | typedef struct {
|
| | | float *x;
|
| | | float *y;
|
| | | } float_pair;
|
| | |
|
| | | int *read_tokenized_data(char *filename, size_t *read)
|
| | | {
|
| | | size_t size = 512;
|
| | | size_t count = 0;
|
| | | FILE *fp = fopen(filename, "r");
|
| | | int* d = (int*)xcalloc(size, sizeof(int));
|
| | | int n, one;
|
| | | one = fscanf(fp, "%d", &n);
|
| | | while(one == 1){
|
| | | ++count;
|
| | | if(count > size){
|
| | | size = size*2;
|
| | | d = (int*)xrealloc(d, size * sizeof(int));
|
| | | }
|
| | | d[count-1] = n;
|
| | | one = fscanf(fp, "%d", &n);
|
| | | }
|
| | | fclose(fp);
|
| | | d = (int*)xrealloc(d, count * sizeof(int));
|
| | | *read = count;
|
| | | return d;
|
| | | }
|
| | |
|
| | | char **read_tokens(char *filename, size_t *read)
|
| | | {
|
| | | size_t size = 512;
|
| | | size_t count = 0;
|
| | | FILE *fp = fopen(filename, "r");
|
| | | char** d = (char**)xcalloc(size, sizeof(char*));
|
| | | char *line;
|
| | | while((line=fgetl(fp)) != 0){
|
| | | ++count;
|
| | | if(count > size){
|
| | | size = size*2;
|
| | | d = (char**)xrealloc(d, size * sizeof(char*));
|
| | | }
|
| | | d[count-1] = line;
|
| | | }
|
| | | fclose(fp);
|
| | | d = (char**)xrealloc(d, count * sizeof(char*));
|
| | | *read = count;
|
| | | return d;
|
| | | }
|
| | |
|
| | | float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps)
|
| | | {
|
| | | float* x = (float*)xcalloc(batch * steps * characters, sizeof(float));
|
| | | float* y = (float*)xcalloc(batch * steps * characters, sizeof(float));
|
| | | int i,j;
|
| | | for(i = 0; i < batch; ++i){
|
| | | for(j = 0; j < steps; ++j){
|
| | | int curr = tokens[(offsets[i])%len];
|
| | | int next = tokens[(offsets[i] + 1)%len];
|
| | |
|
| | | x[(j*batch + i)*characters + curr] = 1;
|
| | | y[(j*batch + i)*characters + next] = 1;
|
| | |
|
| | | offsets[i] = (offsets[i] + 1) % len;
|
| | |
|
| | | if(curr >= characters || curr < 0 || next >= characters || next < 0){
|
| | | error("Bad char");
|
| | | }
|
| | | }
|
| | | }
|
| | | float_pair p;
|
| | | p.x = x;
|
| | | p.y = y;
|
| | | return p;
|
| | | }
|
| | |
|
| | | float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps)
|
| | | {
|
| | | float* x = (float*)xcalloc(batch * steps * characters, sizeof(float));
|
| | | float* y = (float*)xcalloc(batch * steps * characters, sizeof(float));
|
| | | int i,j;
|
| | | for(i = 0; i < batch; ++i){
|
| | | for(j = 0; j < steps; ++j){
|
| | | unsigned char curr = text[(offsets[i])%len];
|
| | | unsigned char next = text[(offsets[i] + 1)%len];
|
| | |
|
| | | x[(j*batch + i)*characters + curr] = 1;
|
| | | y[(j*batch + i)*characters + next] = 1;
|
| | |
|
| | | offsets[i] = (offsets[i] + 1) % len;
|
| | |
|
| | | if(curr > 255 || curr <= 0 || next > 255 || next <= 0){
|
| | | /*text[(index+j+2)%len] = 0;
|
| | | printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]);
|
| | | printf("%s", text+index);
|
| | | */
|
| | | error("Bad char");
|
| | | }
|
| | | }
|
| | | }
|
| | | float_pair p;
|
| | | p.x = x;
|
| | | p.y = y;
|
| | | return p;
|
| | | }
|
| | |
|
| | | void reset_rnn_state(network net, int b)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < net.n; ++i) {
|
| | | #ifdef GPU
|
| | | layer l = net.layers[i];
|
| | | if(l.state_gpu){
|
| | | fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
| | | }
|
| | | #endif
|
| | | }
|
| | | }
|
| | |
|
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
|
| | | {
|
| | | srand(time(0));
|
| | | unsigned char *text = 0;
|
| | | int *tokens = 0;
|
| | | size_t size;
|
| | | if(tokenized){
|
| | | tokens = read_tokenized_data(filename, &size);
|
| | | } else {
|
| | | FILE *fp = fopen(filename, "rb");
|
| | |
|
| | | fseek(fp, 0, SEEK_END);
|
| | | size = ftell(fp);
|
| | | fseek(fp, 0, SEEK_SET);
|
| | |
|
| | | text = (unsigned char *)xcalloc(size + 1, sizeof(char));
|
| | | fread(text, 1, size, fp);
|
| | | fclose(fp);
|
| | | }
|
| | |
|
| | | char* backup_directory = "backup/";
|
| | | char *base = basecfg(cfgfile);
|
| | | fprintf(stderr, "%s\n", base);
|
| | | float avg_loss = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | |
|
| | | int inputs = get_network_input_size(net);
|
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | int batch = net.batch;
|
| | | int steps = net.time_steps;
|
| | | if (clear) {
|
| | | *net.seen = 0;
|
| | | *net.cur_iteration = 0;
|
| | | }
|
| | | int i = (*net.seen)/net.batch;
|
| | |
|
| | | int streams = batch/steps;
|
| | | printf("\n batch = %d, steps = %d, streams = %d, subdivisions = %d, text_size = %ld \n", batch, steps, streams, net.subdivisions, size);
|
| | | printf(" global_batch = %d \n", batch*net.subdivisions);
|
| | | size_t* offsets = (size_t*)xcalloc(streams, sizeof(size_t));
|
| | | int j;
|
| | | for(j = 0; j < streams; ++j){
|
| | | offsets[j] = rand_size_t()%size;
|
| | | //printf(" offset[%d] = %d, ", j, offsets[j]);
|
| | | }
|
| | | //printf("\n");
|
| | |
|
| | | clock_t time;
|
| | | while(get_current_batch(net) < net.max_batches){
|
| | | i += 1;
|
| | | time=clock();
|
| | | float_pair p;
|
| | | if(tokenized){
|
| | | p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
|
| | | }else{
|
| | | p = get_rnn_data(text, offsets, inputs, size, streams, steps);
|
| | | }
|
| | |
|
| | | float loss = train_network_datum(net, p.x, p.y) / (batch);
|
| | | free(p.x);
|
| | | free(p.y);
|
| | | if (avg_loss < 0) avg_loss = loss;
|
| | | avg_loss = avg_loss*.9 + loss*.1;
|
| | |
|
| | | int chars = get_current_batch(net)*batch;
|
| | | fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);
|
| | |
|
| | | for(j = 0; j < streams; ++j){
|
| | | //printf("%d\n", j);
|
| | | if(rand()%10 == 0){
|
| | | //fprintf(stderr, "Reset\n");
|
| | | offsets[j] = rand_size_t()%size;
|
| | | reset_rnn_state(net, j);
|
| | | }
|
| | | }
|
| | |
|
| | | if(i%1000==0){
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | if(i%10==0){
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s.backup", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | }
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | |
|
| | | void print_symbol(int n, char **tokens){
|
| | | if(tokens){
|
| | | printf("%s ", tokens[n]);
|
| | | } else {
|
| | | printf("%c", n);
|
| | | }
|
| | | }
|
| | |
|
| | | void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
|
| | | {
|
| | | char **tokens = 0;
|
| | | if(token_file){
|
| | | size_t n;
|
| | | tokens = read_tokens(token_file, &n);
|
| | | }
|
| | |
|
| | | srand(rseed);
|
| | | char *base = basecfg(cfgfile);
|
| | | fprintf(stderr, "%s\n", base);
|
| | |
|
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // batch=1, time_steps=1
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int inputs = get_network_input_size(net);
|
| | |
|
| | | int i, j;
|
| | | for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
|
| | | int c = 0;
|
| | | int len = strlen(seed);
|
| | | float* input = (float*)xcalloc(inputs, sizeof(float));
|
| | |
|
| | | /*
|
| | | fill_cpu(inputs, 0, input, 1);
|
| | | for(i = 0; i < 10; ++i){
|
| | | network_predict(net, input);
|
| | | }
|
| | | fill_cpu(inputs, 0, input, 1);
|
| | | */
|
| | |
|
| | | for(i = 0; i < len-1; ++i){
|
| | | c = seed[i];
|
| | | input[c] = 1;
|
| | | network_predict(net, input);
|
| | | input[c] = 0;
|
| | | print_symbol(c, tokens);
|
| | | }
|
| | | if(len) c = seed[len-1];
|
| | | print_symbol(c, tokens);
|
| | | for(i = 0; i < num; ++i){
|
| | | input[c] = 1;
|
| | | float *out = network_predict(net, input);
|
| | | input[c] = 0;
|
| | | for(j = 32; j < 127; ++j){
|
| | | //printf("%d %c %f\n",j, j, out[j]);
|
| | | }
|
| | | for(j = 0; j < inputs; ++j){
|
| | | if (out[j] < .0001) out[j] = 0;
|
| | | }
|
| | | c = sample_array(out, inputs);
|
| | | //c = sample_array_custom(out, inputs);
|
| | | //c = max_index(out, inputs);
|
| | | //c = top_max_index(out, inputs, 2);
|
| | | print_symbol(c, tokens);
|
| | | }
|
| | | printf("\n");
|
| | | }
|
| | |
|
| | | void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file)
|
| | | {
|
| | | char **tokens = 0;
|
| | | if(token_file){
|
| | | size_t n;
|
| | | tokens = read_tokens(token_file, &n);
|
| | | }
|
| | |
|
| | | srand(rseed);
|
| | | char *base = basecfg(cfgfile);
|
| | | fprintf(stderr, "%s\n", base);
|
| | |
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int inputs = get_network_input_size(net);
|
| | |
|
| | | int i, j;
|
| | | for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
|
| | | int c = 0;
|
| | | float* input = (float*)xcalloc(inputs, sizeof(float));
|
| | | float *out = 0;
|
| | |
|
| | | while((c = getc(stdin)) != EOF){
|
| | | input[c] = 1;
|
| | | out = network_predict(net, input);
|
| | | input[c] = 0;
|
| | | }
|
| | | for(i = 0; i < num; ++i){
|
| | | for(j = 0; j < inputs; ++j){
|
| | | if (out[j] < .0001) out[j] = 0;
|
| | | }
|
| | | int next = sample_array(out, inputs);
|
| | | if(c == '.' && next == '\n') break;
|
| | | c = next;
|
| | | print_symbol(c, tokens);
|
| | |
|
| | | input[c] = 1;
|
| | | out = network_predict(net, input);
|
| | | input[c] = 0;
|
| | | }
|
| | | printf("\n");
|
| | | }
|
| | |
|
| | | void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
|
| | | {
|
| | | char *base = basecfg(cfgfile);
|
| | | fprintf(stderr, "%s\n", base);
|
| | |
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int inputs = get_network_input_size(net);
|
| | |
|
| | | int count = 0;
|
| | | int words = 1;
|
| | | int c;
|
| | | int len = strlen(seed);
|
| | | float* input = (float*)xcalloc(inputs, sizeof(float));
|
| | | int i;
|
| | | for(i = 0; i < len; ++i){
|
| | | c = seed[i];
|
| | | input[(int)c] = 1;
|
| | | network_predict(net, input);
|
| | | input[(int)c] = 0;
|
| | | }
|
| | | float sum = 0;
|
| | | c = getc(stdin);
|
| | | float log2 = log(2);
|
| | | int in = 0;
|
| | | while(c != EOF){
|
| | | int next = getc(stdin);
|
| | | if(next == EOF) break;
|
| | | if(next < 0 || next >= 255) error("Out of range character");
|
| | |
|
| | | input[c] = 1;
|
| | | float *out = network_predict(net, input);
|
| | | input[c] = 0;
|
| | |
|
| | | if(c == '.' && next == '\n') in = 0;
|
| | | if(!in) {
|
| | | if(c == '>' && next == '>'){
|
| | | in = 1;
|
| | | ++words;
|
| | | }
|
| | | c = next;
|
| | | continue;
|
| | | }
|
| | | ++count;
|
| | | sum += log(out[next])/log2;
|
| | | c = next;
|
| | | printf("%d %d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
|
| | | }
|
| | | }
|
| | |
|
| | | void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
| | | {
|
| | | char *base = basecfg(cfgfile);
|
| | | fprintf(stderr, "%s\n", base);
|
| | |
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int inputs = get_network_input_size(net);
|
| | |
|
| | | int count = 0;
|
| | | int words = 1;
|
| | | int c;
|
| | | int len = strlen(seed);
|
| | | float* input = (float*)xcalloc(inputs, sizeof(float));
|
| | | int i;
|
| | | for(i = 0; i < len; ++i){
|
| | | c = seed[i];
|
| | | input[(int)c] = 1;
|
| | | network_predict(net, input);
|
| | | input[(int)c] = 0;
|
| | | }
|
| | | float sum = 0;
|
| | | c = getc(stdin);
|
| | | float log2 = log(2);
|
| | | while(c != EOF){
|
| | | int next = getc(stdin);
|
| | | if(next == EOF) break;
|
| | | if(next < 0 || next >= 255) error("Out of range character");
|
| | | ++count;
|
| | | if(next == ' ' || next == '\n' || next == '\t') ++words;
|
| | | input[c] = 1;
|
| | | float *out = network_predict(net, input);
|
| | | input[c] = 0;
|
| | | sum += log(out[next])/log2;
|
| | | c = next;
|
| | | printf("%d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
|
| | | }
|
| | | }
|
| | |
|
| | | void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
| | | {
|
| | | char *base = basecfg(cfgfile);
|
| | | fprintf(stderr, "%s\n", base);
|
| | |
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | int inputs = get_network_input_size(net);
|
| | |
|
| | | int c;
|
| | | int seed_len = strlen(seed);
|
| | | float* input = (float*)xcalloc(inputs, sizeof(float));
|
| | | int i;
|
| | | char *line;
|
| | | while((line=fgetl(stdin)) != 0){
|
| | | reset_rnn_state(net, 0);
|
| | | for(i = 0; i < seed_len; ++i){
|
| | | c = seed[i];
|
| | | input[(int)c] = 1;
|
| | | network_predict(net, input);
|
| | | input[(int)c] = 0;
|
| | | }
|
| | | strip(line);
|
| | | int str_len = strlen(line);
|
| | | for(i = 0; i < str_len; ++i){
|
| | | c = line[i];
|
| | | input[(int)c] = 1;
|
| | | network_predict(net, input);
|
| | | input[(int)c] = 0;
|
| | | }
|
| | | c = ' ';
|
| | | input[(int)c] = 1;
|
| | | network_predict(net, input);
|
| | | input[(int)c] = 0;
|
| | |
|
| | | layer l = net.layers[0];
|
| | | #ifdef GPU
|
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs);
|
| | | #endif
|
| | | printf("%s", line);
|
| | | for(i = 0; i < l.outputs; ++i){
|
| | | printf(",%g", l.output[i]);
|
| | | }
|
| | | printf("\n");
|
| | | }
|
| | | }
|
| | |
|
| | | void run_char_rnn(int argc, char **argv)
|
| | | {
|
| | | if(argc < 4){
|
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
| | | return;
|
| | | }
|
| | | char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
|
| | | char *seed = find_char_arg(argc, argv, "-seed", "\n\n");
|
| | | int len = find_int_arg(argc, argv, "-len", 1000);
|
| | | float temp = find_float_arg(argc, argv, "-temp", .7);
|
| | | int rseed = find_int_arg(argc, argv, "-srand", time(0));
|
| | | int clear = find_arg(argc, argv, "-clear");
|
| | | int tokenized = find_arg(argc, argv, "-tokenized");
|
| | | char *tokens = find_char_arg(argc, argv, "-tokens", 0);
|
| | |
|
| | | char *cfg = argv[3];
|
| | | char *weights = (argc > 4) ? argv[4] : 0;
|
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
|
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
|
| | | else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
|
| | | else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
|
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
|
| | | else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens);
|
| | | }
|
| | | #include "network.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | #include "parser.h" |
| | | |
| | | typedef struct { |
| | | float *x; |
| | | float *y; |
| | | } float_pair; |
| | | |
| | | int *read_tokenized_data(char *filename, size_t *read) |
| | | { |
| | | size_t size = 512; |
| | | size_t count = 0; |
| | | FILE *fp = fopen(filename, "r"); |
| | | int* d = (int*)xcalloc(size, sizeof(int)); |
| | | int n, one; |
| | | one = fscanf(fp, "%d", &n); |
| | | while(one == 1){ |
| | | ++count; |
| | | if(count > size){ |
| | | size = size*2; |
| | | d = (int*)xrealloc(d, size * sizeof(int)); |
| | | } |
| | | d[count-1] = n; |
| | | one = fscanf(fp, "%d", &n); |
| | | } |
| | | fclose(fp); |
| | | d = (int*)xrealloc(d, count * sizeof(int)); |
| | | *read = count; |
| | | return d; |
| | | } |
| | | |
| | | char **read_tokens(char *filename, size_t *read) |
| | | { |
| | | size_t size = 512; |
| | | size_t count = 0; |
| | | FILE *fp = fopen(filename, "r"); |
| | | char** d = (char**)xcalloc(size, sizeof(char*)); |
| | | char *line; |
| | | while((line=fgetl(fp)) != 0){ |
| | | ++count; |
| | | if(count > size){ |
| | | size = size*2; |
| | | d = (char**)xrealloc(d, size * sizeof(char*)); |
| | | } |
| | | d[count-1] = line; |
| | | } |
| | | fclose(fp); |
| | | d = (char**)xrealloc(d, count * sizeof(char*)); |
| | | *read = count; |
| | | return d; |
| | | } |
| | | |
| | | float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps) |
| | | { |
| | | float* x = (float*)xcalloc(batch * steps * characters, sizeof(float)); |
| | | float* y = (float*)xcalloc(batch * steps * characters, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < batch; ++i){ |
| | | for(j = 0; j < steps; ++j){ |
| | | int curr = tokens[(offsets[i])%len]; |
| | | int next = tokens[(offsets[i] + 1)%len]; |
| | | |
| | | x[(j*batch + i)*characters + curr] = 1; |
| | | y[(j*batch + i)*characters + next] = 1; |
| | | |
| | | offsets[i] = (offsets[i] + 1) % len; |
| | | |
| | | if(curr >= characters || curr < 0 || next >= characters || next < 0){ |
| | | error("Bad char"); |
| | | } |
| | | } |
| | | } |
| | | float_pair p; |
| | | p.x = x; |
| | | p.y = y; |
| | | return p; |
| | | } |
| | | |
| | | float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps) |
| | | { |
| | | float* x = (float*)xcalloc(batch * steps * characters, sizeof(float)); |
| | | float* y = (float*)xcalloc(batch * steps * characters, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < batch; ++i){ |
| | | for(j = 0; j < steps; ++j){ |
| | | unsigned char curr = text[(offsets[i])%len]; |
| | | unsigned char next = text[(offsets[i] + 1)%len]; |
| | | |
| | | x[(j*batch + i)*characters + curr] = 1; |
| | | y[(j*batch + i)*characters + next] = 1; |
| | | |
| | | offsets[i] = (offsets[i] + 1) % len; |
| | | |
| | | if(curr > 255 || curr <= 0 || next > 255 || next <= 0){ |
| | | /*text[(index+j+2)%len] = 0; |
| | | printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); |
| | | printf("%s", text+index); |
| | | */ |
| | | error("Bad char"); |
| | | } |
| | | } |
| | | } |
| | | float_pair p; |
| | | p.x = x; |
| | | p.y = y; |
| | | return p; |
| | | } |
| | | |
| | | void reset_rnn_state(network net, int b) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | #ifdef GPU |
| | | layer l = net.layers[i]; |
| | | if(l.state_gpu){ |
| | | fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | |
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized) |
| | | { |
| | | srand(time(0)); |
| | | unsigned char *text = 0; |
| | | int *tokens = 0; |
| | | size_t size; |
| | | if(tokenized){ |
| | | tokens = read_tokenized_data(filename, &size); |
| | | } else { |
| | | FILE *fp = fopen(filename, "rb"); |
| | | |
| | | fseek(fp, 0, SEEK_END); |
| | | size = ftell(fp); |
| | | fseek(fp, 0, SEEK_SET); |
| | | |
| | | text = (unsigned char *)xcalloc(size + 1, sizeof(char)); |
| | | fread(text, 1, size, fp); |
| | | fclose(fp); |
| | | } |
| | | |
| | | char* backup_directory = "backup/"; |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | |
| | | int inputs = get_network_input_size(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int batch = net.batch; |
| | | int steps = net.time_steps; |
| | | if (clear) { |
| | | *net.seen = 0; |
| | | *net.cur_iteration = 0; |
| | | } |
| | | int i = (*net.seen)/net.batch; |
| | | |
| | | int streams = batch/steps; |
| | | printf("\n batch = %d, steps = %d, streams = %d, subdivisions = %d, text_size = %ld \n", batch, steps, streams, net.subdivisions, size); |
| | | printf(" global_batch = %d \n", batch*net.subdivisions); |
| | | size_t* offsets = (size_t*)xcalloc(streams, sizeof(size_t)); |
| | | int j; |
| | | for(j = 0; j < streams; ++j){ |
| | | offsets[j] = rand_size_t()%size; |
| | | //printf(" offset[%d] = %d, ", j, offsets[j]); |
| | | } |
| | | //printf("\n"); |
| | | |
| | | clock_t time; |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | float_pair p; |
| | | if(tokenized){ |
| | | p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps); |
| | | }else{ |
| | | p = get_rnn_data(text, offsets, inputs, size, streams, steps); |
| | | } |
| | | |
| | | float loss = train_network_datum(net, p.x, p.y) / (batch); |
| | | free(p.x); |
| | | free(p.y); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | int chars = get_current_batch(net)*batch; |
| | | fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size); |
| | | |
| | | for(j = 0; j < streams; ++j){ |
| | | //printf("%d\n", j); |
| | | if(rand()%10 == 0){ |
| | | //fprintf(stderr, "Reset\n"); |
| | | offsets[j] = rand_size_t()%size; |
| | | reset_rnn_state(net, j); |
| | | } |
| | | } |
| | | |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void print_symbol(int n, char **tokens){ |
| | | if(tokens){ |
| | | printf("%s ", tokens[n]); |
| | | } else { |
| | | printf("%c", n); |
| | | } |
| | | } |
| | | |
| | | void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file) |
| | | { |
| | | char **tokens = 0; |
| | | if(token_file){ |
| | | size_t n; |
| | | tokens = read_tokens(token_file, &n); |
| | | } |
| | | |
| | | srand(rseed); |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg_custom(cfgfile, 1, 1); // batch=1, time_steps=1 |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int i, j; |
| | | for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; |
| | | int c = 0; |
| | | int len = strlen(seed); |
| | | float* input = (float*)xcalloc(inputs, sizeof(float)); |
| | | |
| | | /* |
| | | fill_cpu(inputs, 0, input, 1); |
| | | for(i = 0; i < 10; ++i){ |
| | | network_predict(net, input); |
| | | } |
| | | fill_cpu(inputs, 0, input, 1); |
| | | */ |
| | | |
| | | for(i = 0; i < len-1; ++i){ |
| | | c = seed[i]; |
| | | input[c] = 1; |
| | | network_predict(net, input); |
| | | input[c] = 0; |
| | | print_symbol(c, tokens); |
| | | } |
| | | if(len) c = seed[len-1]; |
| | | print_symbol(c, tokens); |
| | | for(i = 0; i < num; ++i){ |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[c] = 0; |
| | | for(j = 32; j < 127; ++j){ |
| | | //printf("%d %c %f\n",j, j, out[j]); |
| | | } |
| | | for(j = 0; j < inputs; ++j){ |
| | | if (out[j] < .0001) out[j] = 0; |
| | | } |
| | | c = sample_array(out, inputs); |
| | | //c = sample_array_custom(out, inputs); |
| | | //c = max_index(out, inputs); |
| | | //c = top_max_index(out, inputs, 2); |
| | | print_symbol(c, tokens); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file) |
| | | { |
| | | char **tokens = 0; |
| | | if(token_file){ |
| | | size_t n; |
| | | tokens = read_tokens(token_file, &n); |
| | | } |
| | | |
| | | srand(rseed); |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int i, j; |
| | | for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; |
| | | int c = 0; |
| | | float* input = (float*)xcalloc(inputs, sizeof(float)); |
| | | float *out = 0; |
| | | |
| | | while((c = getc(stdin)) != EOF){ |
| | | input[c] = 1; |
| | | out = network_predict(net, input); |
| | | input[c] = 0; |
| | | } |
| | | for(i = 0; i < num; ++i){ |
| | | for(j = 0; j < inputs; ++j){ |
| | | if (out[j] < .0001) out[j] = 0; |
| | | } |
| | | int next = sample_array(out, inputs); |
| | | if(c == '.' && next == '\n') break; |
| | | c = next; |
| | | print_symbol(c, tokens); |
| | | |
| | | input[c] = 1; |
| | | out = network_predict(net, input); |
| | | input[c] = 0; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed) |
| | | { |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int count = 0; |
| | | int words = 1; |
| | | int c; |
| | | int len = strlen(seed); |
| | | float* input = (float*)xcalloc(inputs, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | float sum = 0; |
| | | c = getc(stdin); |
| | | float log2 = log(2); |
| | | int in = 0; |
| | | while(c != EOF){ |
| | | int next = getc(stdin); |
| | | if(next == EOF) break; |
| | | if(next < 0 || next >= 255) error("Out of range character"); |
| | | |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[c] = 0; |
| | | |
| | | if(c == '.' && next == '\n') in = 0; |
| | | if(!in) { |
| | | if(c == '>' && next == '>'){ |
| | | in = 1; |
| | | ++words; |
| | | } |
| | | c = next; |
| | | continue; |
| | | } |
| | | ++count; |
| | | sum += log(out[next])/log2; |
| | | c = next; |
| | | printf("%d %d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words)); |
| | | } |
| | | } |
| | | |
| | | void valid_char_rnn(char *cfgfile, char *weightfile, char *seed) |
| | | { |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int count = 0; |
| | | int words = 1; |
| | | int c; |
| | | int len = strlen(seed); |
| | | float* input = (float*)xcalloc(inputs, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | float sum = 0; |
| | | c = getc(stdin); |
| | | float log2 = log(2); |
| | | while(c != EOF){ |
| | | int next = getc(stdin); |
| | | if(next == EOF) break; |
| | | if(next < 0 || next >= 255) error("Out of range character"); |
| | | ++count; |
| | | if(next == ' ' || next == '\n' || next == '\t') ++words; |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[c] = 0; |
| | | sum += log(out[next])/log2; |
| | | c = next; |
| | | printf("%d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words)); |
| | | } |
| | | } |
| | | |
| | | void vec_char_rnn(char *cfgfile, char *weightfile, char *seed) |
| | | { |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int c; |
| | | int seed_len = strlen(seed); |
| | | float* input = (float*)xcalloc(inputs, sizeof(float)); |
| | | int i; |
| | | char *line; |
| | | while((line=fgetl(stdin)) != 0){ |
| | | reset_rnn_state(net, 0); |
| | | for(i = 0; i < seed_len; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | strip(line); |
| | | int str_len = strlen(line); |
| | | for(i = 0; i < str_len; ++i){ |
| | | c = line[i]; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | } |
| | | c = ' '; |
| | | input[(int)c] = 1; |
| | | network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | |
| | | layer l = net.layers[0]; |
| | | #ifdef GPU |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs); |
| | | #endif |
| | | printf("%s", line); |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | printf(",%g", l.output[i]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | } |
| | | |
| | | void run_char_rnn(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); |
| | | char *seed = find_char_arg(argc, argv, "-seed", "\n\n"); |
| | | int len = find_int_arg(argc, argv, "-len", 1000); |
| | | float temp = find_float_arg(argc, argv, "-temp", .7); |
| | | int rseed = find_int_arg(argc, argv, "-srand", time(0)); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | int tokenized = find_arg(argc, argv, "-tokenized"); |
| | | char *tokens = find_char_arg(argc, argv, "-tokens", 0); |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed); |
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens); |
| | | else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens); |
| | | } |