| | |
| | | #include "scale_channels_layer.h"
|
| | | #include "utils.h"
|
| | | #include "dark_cuda.h"
|
| | | #include "blas.h"
|
| | | #include <stdio.h>
|
| | | #include <assert.h>
|
| | |
|
| | | layer make_scale_channels_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2, int scale_wh)
|
| | | {
|
| | | fprintf(stderr,"scale Layer: %d\n", index);
|
| | | layer l = { (LAYER_TYPE)0 };
|
| | | l.type = SCALE_CHANNELS;
|
| | | l.batch = batch;
|
| | | l.scale_wh = scale_wh;
|
| | | l.w = w;
|
| | | l.h = h;
|
| | | l.c = c;
|
| | | if (!l.scale_wh) assert(w == 1 && h == 1);
|
| | | else assert(c == 1);
|
| | |
|
| | | l.out_w = w2;
|
| | | l.out_h = h2;
|
| | | l.out_c = c2;
|
| | | if (!l.scale_wh) assert(l.out_c == l.c);
|
| | | else assert(l.out_w == l.w && l.out_h == l.h);
|
| | |
|
| | | l.outputs = l.out_w*l.out_h*l.out_c;
|
| | | l.inputs = l.outputs;
|
| | | l.index = index;
|
| | |
|
| | | l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float));
|
| | | l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
|
| | |
|
| | | l.forward = forward_scale_channels_layer;
|
| | | l.backward = backward_scale_channels_layer;
|
| | | #ifdef GPU
|
| | | l.forward_gpu = forward_scale_channels_layer_gpu;
|
| | | l.backward_gpu = backward_scale_channels_layer_gpu;
|
| | |
|
| | | l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
|
| | | l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
|
| | | #endif
|
| | | return l;
|
| | | }
|
| | |
|
| | | void resize_scale_channels_layer(layer *l, network *net)
|
| | | {
|
| | | layer first = net->layers[l->index];
|
| | | l->out_w = first.out_w;
|
| | | l->out_h = first.out_h;
|
| | | l->outputs = l->out_w*l->out_h*l->out_c;
|
| | | l->inputs = l->outputs;
|
| | | l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
|
| | | l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
|
| | |
|
| | | #ifdef GPU
|
| | | cuda_free(l->output_gpu);
|
| | | cuda_free(l->delta_gpu);
|
| | | l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
|
| | | l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
|
| | | #endif
|
| | |
|
| | | }
|
| | |
|
| | | void forward_scale_channels_layer(const layer l, network_state state)
|
| | | {
|
| | | int size = l.batch * l.out_c * l.out_w * l.out_h;
|
| | | int channel_size = l.out_w * l.out_h;
|
| | | int batch_size = l.out_c * l.out_w * l.out_h;
|
| | | float *from_output = state.net.layers[l.index].output;
|
| | |
|
| | | if (l.scale_wh) {
|
| | | int i;
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < size; ++i) {
|
| | | int input_index = i % channel_size + (i / batch_size)*channel_size;
|
| | |
|
| | | l.output[i] = state.input[input_index] * from_output[i];
|
| | | }
|
| | | }
|
| | | else {
|
| | | int i;
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < size; ++i) {
|
| | | l.output[i] = state.input[i / channel_size] * from_output[i];
|
| | | }
|
| | | }
|
| | |
|
| | | activate_array(l.output, l.outputs*l.batch, l.activation);
|
| | | }
|
| | |
|
| | | void backward_scale_channels_layer(const layer l, network_state state)
|
| | | {
|
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
| | | //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1);
|
| | | //scale_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta);
|
| | |
|
| | | int size = l.batch * l.out_c * l.out_w * l.out_h;
|
| | | int channel_size = l.out_w * l.out_h;
|
| | | int batch_size = l.out_c * l.out_w * l.out_h;
|
| | | float *from_output = state.net.layers[l.index].output;
|
| | | float *from_delta = state.net.layers[l.index].delta;
|
| | |
|
| | | if (l.scale_wh) {
|
| | | int i;
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < size; ++i) {
|
| | | int input_index = i % channel_size + (i / batch_size)*channel_size;
|
| | |
|
| | | state.delta[input_index] += l.delta[i] * from_output[i];// / l.out_c; // l.delta * from (should be divided by l.out_c?)
|
| | |
|
| | | from_delta[i] += state.input[input_index] * l.delta[i]; // input * l.delta
|
| | | }
|
| | | }
|
| | | else {
|
| | | int i;
|
| | | #pragma omp parallel for
|
| | | for (i = 0; i < size; ++i) {
|
| | | state.delta[i / channel_size] += l.delta[i] * from_output[i];// / channel_size; // l.delta * from (should be divided by channel_size?)
|
| | |
|
| | | from_delta[i] += state.input[i / channel_size] * l.delta[i]; // input * l.delta
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | | void forward_scale_channels_layer_gpu(const layer l, network_state state)
|
| | | {
|
| | | int size = l.batch * l.out_c * l.out_w * l.out_h;
|
| | | int channel_size = l.out_w * l.out_h;
|
| | | int batch_size = l.out_c * l.out_w * l.out_h;
|
| | |
|
| | | scale_channels_gpu(state.net.layers[l.index].output_gpu, size, channel_size, batch_size, l.scale_wh, state.input, l.output_gpu);
|
| | |
|
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
| | | }
|
| | |
|
| | | void backward_scale_channels_layer_gpu(const layer l, network_state state)
|
| | | {
|
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
| | |
|
| | | int size = l.batch * l.out_c * l.out_w * l.out_h;
|
| | | int channel_size = l.out_w * l.out_h;
|
| | | int batch_size = l.out_c * l.out_w * l.out_h;
|
| | | float *from_output = state.net.layers[l.index].output_gpu;
|
| | | float *from_delta = state.net.layers[l.index].delta_gpu;
|
| | |
|
| | | backward_scale_channels_gpu(l.delta_gpu, size, channel_size, batch_size, l.scale_wh, state.input, from_delta, from_output, state.delta);
|
| | | }
|
| | | #endif
|
| | | #include "scale_channels_layer.h" |
| | | #include "utils.h" |
| | | #include "dark_cuda.h" |
| | | #include "blas.h" |
| | | #include <stdio.h> |
| | | #include <assert.h> |
| | | |
| | | layer make_scale_channels_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2, int scale_wh) |
| | | { |
| | | fprintf(stderr,"scale Layer: %d\n", index); |
| | | layer l = { (LAYER_TYPE)0 }; |
| | | l.type = SCALE_CHANNELS; |
| | | l.batch = batch; |
| | | l.scale_wh = scale_wh; |
| | | l.w = w; |
| | | l.h = h; |
| | | l.c = c; |
| | | if (!l.scale_wh) assert(w == 1 && h == 1); |
| | | else assert(c == 1); |
| | | |
| | | l.out_w = w2; |
| | | l.out_h = h2; |
| | | l.out_c = c2; |
| | | if (!l.scale_wh) assert(l.out_c == l.c); |
| | | else assert(l.out_w == l.w && l.out_h == l.h); |
| | | |
| | | l.outputs = l.out_w*l.out_h*l.out_c; |
| | | l.inputs = l.outputs; |
| | | l.index = index; |
| | | |
| | | l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
| | | l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
| | | |
| | | l.forward = forward_scale_channels_layer; |
| | | l.backward = backward_scale_channels_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_scale_channels_layer_gpu; |
| | | l.backward_gpu = backward_scale_channels_layer_gpu; |
| | | |
| | | l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); |
| | | l.output_gpu = cuda_make_array(l.output, l.outputs*batch); |
| | | #endif |
| | | return l; |
| | | } |
| | | |
| | | void resize_scale_channels_layer(layer *l, network *net) |
| | | { |
| | | layer first = net->layers[l->index]; |
| | | l->out_w = first.out_w; |
| | | l->out_h = first.out_h; |
| | | l->outputs = l->out_w*l->out_h*l->out_c; |
| | | l->inputs = l->outputs; |
| | | l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); |
| | | l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(l->output_gpu); |
| | | cuda_free(l->delta_gpu); |
| | | l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); |
| | | #endif |
| | | |
| | | } |
| | | |
| | | void forward_scale_channels_layer(const layer l, network_state state) |
| | | { |
| | | int size = l.batch * l.out_c * l.out_w * l.out_h; |
| | | int channel_size = l.out_w * l.out_h; |
| | | int batch_size = l.out_c * l.out_w * l.out_h; |
| | | float *from_output = state.net.layers[l.index].output; |
| | | |
| | | if (l.scale_wh) { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < size; ++i) { |
| | | int input_index = i % channel_size + (i / batch_size)*channel_size; |
| | | |
| | | l.output[i] = state.input[input_index] * from_output[i]; |
| | | } |
| | | } |
| | | else { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < size; ++i) { |
| | | l.output[i] = state.input[i / channel_size] * from_output[i]; |
| | | } |
| | | } |
| | | |
| | | activate_array(l.output, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_scale_channels_layer(const layer l, network_state state) |
| | | { |
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
| | | //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); |
| | | //scale_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); |
| | | |
| | | int size = l.batch * l.out_c * l.out_w * l.out_h; |
| | | int channel_size = l.out_w * l.out_h; |
| | | int batch_size = l.out_c * l.out_w * l.out_h; |
| | | float *from_output = state.net.layers[l.index].output; |
| | | float *from_delta = state.net.layers[l.index].delta; |
| | | |
| | | if (l.scale_wh) { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < size; ++i) { |
| | | int input_index = i % channel_size + (i / batch_size)*channel_size; |
| | | |
| | | state.delta[input_index] += l.delta[i] * from_output[i];// / l.out_c; // l.delta * from (should be divided by l.out_c?) |
| | | |
| | | from_delta[i] += state.input[input_index] * l.delta[i]; // input * l.delta |
| | | } |
| | | } |
| | | else { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < size; ++i) { |
| | | state.delta[i / channel_size] += l.delta[i] * from_output[i];// / channel_size; // l.delta * from (should be divided by channel_size?) |
| | | |
| | | from_delta[i] += state.input[i / channel_size] * l.delta[i]; // input * l.delta |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_scale_channels_layer_gpu(const layer l, network_state state) |
| | | { |
| | | int size = l.batch * l.out_c * l.out_w * l.out_h; |
| | | int channel_size = l.out_w * l.out_h; |
| | | int batch_size = l.out_c * l.out_w * l.out_h; |
| | | |
| | | scale_channels_gpu(state.net.layers[l.index].output_gpu, size, channel_size, batch_size, l.scale_wh, state.input, l.output_gpu); |
| | | |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_scale_channels_layer_gpu(const layer l, network_state state) |
| | | { |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | |
| | | int size = l.batch * l.out_c * l.out_w * l.out_h; |
| | | int channel_size = l.out_w * l.out_h; |
| | | int batch_size = l.out_c * l.out_w * l.out_h; |
| | | float *from_output = state.net.layers[l.index].output_gpu; |
| | | float *from_delta = state.net.layers[l.index].delta_gpu; |
| | | |
| | | backward_scale_channels_gpu(l.delta_gpu, size, channel_size, batch_size, l.scale_wh, state.input, from_delta, from_output, state.delta); |
| | | } |
| | | #endif |