| | |
| | | #include "network.h"
|
| | | #include "utils.h"
|
| | | #include "parser.h"
|
| | |
|
| | | void train_tag(char *cfgfile, char *weightfile, int clear)
|
| | | {
|
| | | srand(time(0));
|
| | | float avg_loss = -1;
|
| | | char *base = basecfg(cfgfile);
|
| | | char* backup_directory = "backup/";
|
| | | printf("%s\n", base);
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | if (clear) {
|
| | | *net.seen = 0;
|
| | | *net.cur_iteration = 0;
|
| | | }
|
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | int imgs = 1024;
|
| | | list* plist = get_paths("tag/train.list");
|
| | | char **paths = (char **)list_to_array(plist);
|
| | | printf("%d\n", plist->size);
|
| | | int N = plist->size;
|
| | | clock_t time;
|
| | | pthread_t load_thread;
|
| | | data train;
|
| | | data buffer;
|
| | |
|
| | | load_args args = {0};
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | |
|
| | | args.min = net.w;
|
| | | args.max = net.max_crop;
|
| | | args.size = net.w;
|
| | |
|
| | | args.paths = paths;
|
| | | args.classes = net.outputs;
|
| | | args.n = imgs;
|
| | | args.m = N;
|
| | | args.d = &buffer;
|
| | | args.type = TAG_DATA;
|
| | |
|
| | | args.angle = net.angle;
|
| | | args.exposure = net.exposure;
|
| | | args.saturation = net.saturation;
|
| | | args.hue = net.hue;
|
| | |
|
| | | fprintf(stderr, "%d classes\n", net.outputs);
|
| | |
|
| | | load_thread = load_data_in_thread(args);
|
| | | int epoch = (*net.seen)/N;
|
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
|
| | | time=clock();
|
| | | pthread_join(load_thread, 0);
|
| | | train = buffer;
|
| | |
|
| | | load_thread = load_data_in_thread(args);
|
| | | printf("Loaded: %lf seconds\n", sec(clock()-time));
|
| | | time=clock();
|
| | | float loss = train_network(net, train);
|
| | | if(avg_loss == -1) avg_loss = loss;
|
| | | avg_loss = avg_loss*.9 + loss*.1;
|
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
| | | free_data(train);
|
| | | if(*net.seen/N > epoch){
|
| | | epoch = *net.seen/N;
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | if(get_current_batch(net)%100 == 0){
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s.backup",backup_directory,base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | }
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | |
|
| | | pthread_join(load_thread, 0);
|
| | | free_data(buffer);
|
| | | free_network(net);
|
| | | free_ptrs((void**)paths, plist->size);
|
| | | free_list(plist);
|
| | | free(base);
|
| | | }
|
| | |
|
| | | void test_tag(char *cfgfile, char *weightfile, char *filename)
|
| | | {
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | set_batch_network(&net, 1);
|
| | | srand(2222222);
|
| | | int i = 0;
|
| | | char **names = get_labels("data/tags.txt");
|
| | | clock_t time;
|
| | | int indexes[10];
|
| | | char buff[256];
|
| | | char *input = buff;
|
| | | int size = net.w;
|
| | | while(1){
|
| | | if(filename){
|
| | | strncpy(input, filename, 256);
|
| | | }else{
|
| | | printf("Enter Image Path: ");
|
| | | fflush(stdout);
|
| | | input = fgets(input, 256, stdin);
|
| | | if(!input) return;
|
| | | strtok(input, "\n");
|
| | | }
|
| | | image im = load_image_color(input, 0, 0);
|
| | | image r = resize_min(im, size);
|
| | | resize_network(&net, r.w, r.h);
|
| | | printf("%d %d\n", r.w, r.h);
|
| | |
|
| | | float *X = r.data;
|
| | | time=clock();
|
| | | float *predictions = network_predict(net, X);
|
| | | top_predictions(net, 10, indexes);
|
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
| | | for(i = 0; i < 10; ++i){
|
| | | int index = indexes[i];
|
| | | printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
|
| | | }
|
| | | if(r.data != im.data) free_image(r);
|
| | | free_image(im);
|
| | | if (filename) break;
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | void run_tag(int argc, char **argv)
|
| | | {
|
| | | if(argc < 4){
|
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
| | | return;
|
| | | }
|
| | |
|
| | | int clear = find_arg(argc, argv, "-clear");
|
| | | char *cfg = argv[3];
|
| | | char *weights = (argc > 4) ? argv[4] : 0;
|
| | | char *filename = (argc > 5) ? argv[5] : 0;
|
| | | if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear);
|
| | | else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename);
|
| | | }
|
| | | #include "network.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | void train_tag(char *cfgfile, char *weightfile, int clear) |
| | | { |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | char* backup_directory = "backup/"; |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if (clear) { |
| | | *net.seen = 0; |
| | | *net.cur_iteration = 0; |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1024; |
| | | list* plist = get_paths("tag/train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | int N = plist->size; |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.min = net.w; |
| | | args.max = net.max_crop; |
| | | args.size = net.w; |
| | | |
| | | args.paths = paths; |
| | | args.classes = net.outputs; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.d = &buffer; |
| | | args.type = TAG_DATA; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | fprintf(stderr, "%d classes\n", net.outputs); |
| | | |
| | | load_thread = load_data_in_thread(args); |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | |
| | | load_thread = load_data_in_thread(args); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | free_data(train); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | free_network(net); |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | } |
| | | |
| | | void test_tag(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char **names = get_labels("data/tags.txt"); |
| | | clock_t time; |
| | | int indexes[10]; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int size = net.w; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | }else{ |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 0, 0); |
| | | image r = resize_min(im, size); |
| | | resize_network(&net, r.w, r.h); |
| | | printf("%d %d\n", r.w, r.h); |
| | | |
| | | float *X = r.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | for(i = 0; i < 10; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
| | | } |
| | | if(r.data != im.data) free_image(r); |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | |
| | | void run_tag(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename); |
| | | } |