| | |
| | | #include "network.h"
|
| | | #include "cost_layer.h"
|
| | | #include "utils.h"
|
| | | #include "parser.h"
|
| | |
|
| | | void extract_voxel(char *lfile, char *rfile, char *prefix)
|
| | | {
|
| | | #ifdef OPENCV
|
| | | int w = 1920;
|
| | | int h = 1080;
|
| | | int shift = 0;
|
| | | int count = 0;
|
| | | cap_cv *lcap = get_capture_video_stream(lfile);
|
| | | cap_cv *rcap = get_capture_video_stream(rfile);
|
| | | while(1){
|
| | | image l = get_image_from_stream_cpp(lcap);
|
| | | image r = get_image_from_stream_cpp(rcap);
|
| | | if(!l.w || !r.w) break;
|
| | | if(count%100 == 0) {
|
| | | shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
|
| | | printf("%d\n", shift);
|
| | | }
|
| | | image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
|
| | | image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
|
| | | char buff[256];
|
| | | sprintf(buff, "%s_%05d_l", prefix, count);
|
| | | save_image(ls, buff);
|
| | | sprintf(buff, "%s_%05d_r", prefix, count);
|
| | | save_image(rs, buff);
|
| | | free_image(l);
|
| | | free_image(r);
|
| | | free_image(ls);
|
| | | free_image(rs);
|
| | | ++count;
|
| | | }
|
| | |
|
| | | #else
|
| | | printf("need OpenCV for extraction\n");
|
| | | #endif
|
| | | }
|
| | |
|
| | | void train_voxel(char *cfgfile, char *weightfile)
|
| | | {
|
| | | char* train_images = "data/imagenet/imagenet1k.train.list";
|
| | | char* backup_directory = "backup/";
|
| | | srand(time(0));
|
| | | char *base = basecfg(cfgfile);
|
| | | printf("%s\n", base);
|
| | | float avg_loss = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | int imgs = net.batch*net.subdivisions;
|
| | | int i = *net.seen/imgs;
|
| | | data train, buffer;
|
| | |
|
| | |
|
| | | list *plist = get_paths(train_images);
|
| | | //int N = plist->size;
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | load_args args = {0};
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | | args.scale = 4;
|
| | | args.paths = paths;
|
| | | args.n = imgs;
|
| | | args.m = plist->size;
|
| | | args.d = &buffer;
|
| | | args.type = SUPER_DATA;
|
| | |
|
| | | pthread_t load_thread = load_data_in_thread(args);
|
| | | clock_t time;
|
| | | //while(i*imgs < N*120){
|
| | | while(get_current_batch(net) < net.max_batches){
|
| | | i += 1;
|
| | | time=clock();
|
| | | pthread_join(load_thread, 0);
|
| | | train = buffer;
|
| | | load_thread = load_data_in_thread(args);
|
| | |
|
| | | printf("Loaded: %lf seconds\n", sec(clock()-time));
|
| | |
|
| | | time=clock();
|
| | | float loss = train_network(net, train);
|
| | | if (avg_loss < 0) avg_loss = loss;
|
| | | avg_loss = avg_loss*.9 + loss*.1;
|
| | |
|
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
| | | if(i%1000==0){
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | if(i%100==0){
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s.backup", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | free_data(train);
|
| | | }
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | |
|
| | | void test_voxel(char *cfgfile, char *weightfile, char *filename)
|
| | | {
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | set_batch_network(&net, 1);
|
| | | srand(2222222);
|
| | |
|
| | | clock_t time;
|
| | | char buff[256];
|
| | | char *input = buff;
|
| | | while(1){
|
| | | if(filename){
|
| | | strncpy(input, filename, 256);
|
| | | }else{
|
| | | printf("Enter Image Path: ");
|
| | | fflush(stdout);
|
| | | input = fgets(input, 256, stdin);
|
| | | if(!input) return;
|
| | | strtok(input, "\n");
|
| | | }
|
| | | image im = load_image_color(input, 0, 0);
|
| | | resize_network(&net, im.w, im.h);
|
| | | printf("%d %d\n", im.w, im.h);
|
| | |
|
| | | float *X = im.data;
|
| | | time=clock();
|
| | | network_predict(net, X);
|
| | | image out = get_network_image(net);
|
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
| | | save_image(out, "out");
|
| | |
|
| | | free_image(im);
|
| | | if (filename) break;
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | void run_voxel(int argc, char **argv)
|
| | | {
|
| | | if(argc < 4){
|
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
| | | return;
|
| | | }
|
| | |
|
| | | char *cfg = argv[3];
|
| | | char *weights = (argc > 4) ? argv[4] : 0;
|
| | | char *filename = (argc > 5) ? argv[5] : 0;
|
| | | if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
|
| | | else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
|
| | | else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
|
| | | /*
|
| | | else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
|
| | | */
|
| | | }
|
| | | #include "network.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | void extract_voxel(char *lfile, char *rfile, char *prefix) |
| | | { |
| | | #ifdef OPENCV |
| | | int w = 1920; |
| | | int h = 1080; |
| | | int shift = 0; |
| | | int count = 0; |
| | | cap_cv *lcap = get_capture_video_stream(lfile); |
| | | cap_cv *rcap = get_capture_video_stream(rfile); |
| | | while(1){ |
| | | image l = get_image_from_stream_cpp(lcap); |
| | | image r = get_image_from_stream_cpp(rcap); |
| | | if(!l.w || !r.w) break; |
| | | if(count%100 == 0) { |
| | | shift = best_3d_shift_r(l, r, -l.h/100, l.h/100); |
| | | printf("%d\n", shift); |
| | | } |
| | | image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h); |
| | | image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h); |
| | | char buff[256]; |
| | | sprintf(buff, "%s_%05d_l", prefix, count); |
| | | save_image(ls, buff); |
| | | sprintf(buff, "%s_%05d_r", prefix, count); |
| | | save_image(rs, buff); |
| | | free_image(l); |
| | | free_image(r); |
| | | free_image(ls); |
| | | free_image(rs); |
| | | ++count; |
| | | } |
| | | |
| | | #else |
| | | printf("need OpenCV for extraction\n"); |
| | | #endif |
| | | } |
| | | |
| | | void train_voxel(char *cfgfile, char *weightfile) |
| | | { |
| | | char* train_images = "data/imagenet/imagenet1k.train.list"; |
| | | char* backup_directory = "backup/"; |
| | | srand(time(0)); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | | |
| | | list *plist = get_paths(train_images); |
| | | //int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.scale = 4; |
| | | args.paths = paths; |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.d = &buffer; |
| | | args.type = SUPER_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_in_thread(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void test_voxel(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | |
| | | clock_t time; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | }else{ |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 0, 0); |
| | | resize_network(&net, im.w, im.h); |
| | | printf("%d %d\n", im.w, im.h); |
| | | |
| | | float *X = im.data; |
| | | time=clock(); |
| | | network_predict(net, X); |
| | | image out = get_network_image(net); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | save_image(out, "out"); |
| | | |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | |
| | | void run_voxel(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]); |
| | | /* |
| | | else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights); |
| | | */ |
| | | } |