| | |
| | | #include "network.h"
|
| | | #include "detection_layer.h"
|
| | | #include "cost_layer.h"
|
| | | #include "utils.h"
|
| | | #include "parser.h"
|
| | | #include "box.h"
|
| | | #include "demo.h"
|
| | |
|
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
| | |
|
| | | void train_yolo(char *cfgfile, char *weightfile)
|
| | | {
|
| | | char* train_images = "data/voc/train.txt";
|
| | | char* backup_directory = "backup/";
|
| | | srand(time(0));
|
| | | char *base = basecfg(cfgfile);
|
| | | printf("%s\n", base);
|
| | | float avg_loss = -1;
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | int imgs = net.batch*net.subdivisions;
|
| | | int i = *net.seen/imgs;
|
| | | data train, buffer;
|
| | |
|
| | |
|
| | | layer l = net.layers[net.n - 1];
|
| | |
|
| | | int side = l.side;
|
| | | int classes = l.classes;
|
| | | float jitter = l.jitter;
|
| | |
|
| | | list *plist = get_paths(train_images);
|
| | | //int N = plist->size;
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | load_args args = {0};
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | | args.paths = paths;
|
| | | args.n = imgs;
|
| | | args.m = plist->size;
|
| | | args.classes = classes;
|
| | | args.jitter = jitter;
|
| | | args.num_boxes = side;
|
| | | args.d = &buffer;
|
| | | args.type = REGION_DATA;
|
| | |
|
| | | args.angle = net.angle;
|
| | | args.exposure = net.exposure;
|
| | | args.saturation = net.saturation;
|
| | | args.hue = net.hue;
|
| | |
|
| | | pthread_t load_thread = load_data_in_thread(args);
|
| | | clock_t time;
|
| | | //while(i*imgs < N*120){
|
| | | while(get_current_batch(net) < net.max_batches){
|
| | | i += 1;
|
| | | time=clock();
|
| | | pthread_join(load_thread, 0);
|
| | | train = buffer;
|
| | | load_thread = load_data_in_thread(args);
|
| | |
|
| | | printf("Loaded: %lf seconds\n", sec(clock()-time));
|
| | |
|
| | | time=clock();
|
| | | float loss = train_network(net, train);
|
| | | if (avg_loss < 0) avg_loss = loss;
|
| | | avg_loss = avg_loss*.9 + loss*.1;
|
| | |
|
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
| | | save_weights(net, buff);
|
| | | }
|
| | | free_data(train);
|
| | | }
|
| | | char buff[256];
|
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
| | | save_weights(net, buff);
|
| | | }
|
| | |
|
| | | void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
|
| | | {
|
| | | int i, j;
|
| | | for(i = 0; i < total; ++i){
|
| | | float xmin = boxes[i].x - boxes[i].w/2.;
|
| | | float xmax = boxes[i].x + boxes[i].w/2.;
|
| | | float ymin = boxes[i].y - boxes[i].h/2.;
|
| | | float ymax = boxes[i].y + boxes[i].h/2.;
|
| | |
|
| | | if (xmin < 0) xmin = 0;
|
| | | if (ymin < 0) ymin = 0;
|
| | | if (xmax > w) xmax = w;
|
| | | if (ymax > h) ymax = h;
|
| | |
|
| | | for(j = 0; j < classes; ++j){
|
| | | if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
|
| | | xmin, ymin, xmax, ymax);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void validate_yolo(char *cfgfile, char *weightfile)
|
| | | {
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | set_batch_network(&net, 1);
|
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | srand(time(0));
|
| | |
|
| | | char *base = "results/comp4_det_test_";
|
| | | //list *plist = get_paths("data/voc.2007.test");
|
| | | list* plist = get_paths("data/voc/2007_test.txt");
|
| | | //list *plist = get_paths("data/voc.2012.test");
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | layer l = net.layers[net.n-1];
|
| | | int classes = l.classes;
|
| | |
|
| | | int j;
|
| | | FILE** fps = (FILE**)xcalloc(classes, sizeof(FILE*));
|
| | | for(j = 0; j < classes; ++j){
|
| | | char buff[1024];
|
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
|
| | | fps[j] = fopen(buff, "w");
|
| | | }
|
| | | box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
|
| | | float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
|
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float*)xcalloc(classes, sizeof(float));
|
| | |
|
| | | int m = plist->size;
|
| | | int i=0;
|
| | | int t;
|
| | |
|
| | | float thresh = .001;
|
| | | int nms = 1;
|
| | | float iou_thresh = .5;
|
| | |
|
| | | int nthreads = 8;
|
| | | image* val = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* buf = (image*)xcalloc(nthreads, sizeof(image));
|
| | | image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
|
| | | pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
|
| | |
|
| | | load_args args = {0};
|
| | | args.w = net.w;
|
| | | args.h = net.h;
|
| | | args.type = IMAGE_DATA;
|
| | |
|
| | | for(t = 0; t < nthreads; ++t){
|
| | | args.path = paths[i+t];
|
| | | args.im = &buf[t];
|
| | | args.resized = &buf_resized[t];
|
| | | thr[t] = load_data_in_thread(args);
|
| | | }
|
| | | time_t start = time(0);
|
| | | for(i = nthreads; i < m+nthreads; i += nthreads){
|
| | | fprintf(stderr, "%d\n", i);
|
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
| | | pthread_join(thr[t], 0);
|
| | | val[t] = buf[t];
|
| | | val_resized[t] = buf_resized[t];
|
| | | }
|
| | | for(t = 0; t < nthreads && i+t < m; ++t){
|
| | | args.path = paths[i+t];
|
| | | args.im = &buf[t];
|
| | | args.resized = &buf_resized[t];
|
| | | thr[t] = load_data_in_thread(args);
|
| | | }
|
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
| | | char *path = paths[i+t-nthreads];
|
| | | char *id = basecfg(path);
|
| | | float *X = val_resized[t].data;
|
| | | network_predict(net, X);
|
| | | int w = val[t].w;
|
| | | int h = val[t].h;
|
| | | get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
|
| | | if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
|
| | | print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
|
| | | free(id);
|
| | | free_image(val[t]);
|
| | | free_image(val_resized[t]);
|
| | | }
|
| | | }
|
| | |
|
| | | if (fps) free(fps);
|
| | | if (val) free(val);
|
| | | if (val_resized) free(val_resized);
|
| | | if (buf) free(buf);
|
| | | if (buf_resized) free(buf_resized);
|
| | | if (thr) free(thr);
|
| | |
|
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
| | | for(j = 0; j < classes; ++j){
|
| | | fclose(fps[j]);
|
| | | }
|
| | | free(fps);
|
| | | }
|
| | |
|
| | | void validate_yolo_recall(char *cfgfile, char *weightfile)
|
| | | {
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | set_batch_network(&net, 1);
|
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
| | | srand(time(0));
|
| | |
|
| | | list *plist = get_paths("data/voc.2007.test");
|
| | | char **paths = (char **)list_to_array(plist);
|
| | |
|
| | | layer l = net.layers[net.n-1];
|
| | | int classes = l.classes;
|
| | | int side = l.side;
|
| | |
|
| | | int j, k;
|
| | | box* boxes = (box*)xcalloc(side * side * l.n, sizeof(box));
|
| | | float** probs = (float**)xcalloc(side * side * l.n, sizeof(float*));
|
| | | for(j = 0; j < side*side*l.n; ++j) {
|
| | | probs[j] = (float*)xcalloc(classes, sizeof(float));
|
| | | }
|
| | |
|
| | | int m = plist->size;
|
| | | int i=0;
|
| | |
|
| | | float thresh = .001;
|
| | | float iou_thresh = .5;
|
| | | float nms = 0;
|
| | |
|
| | | int total = 0;
|
| | | int correct = 0;
|
| | | int proposals = 0;
|
| | | float avg_iou = 0;
|
| | |
|
| | | for(i = 0; i < m; ++i){
|
| | | char *path = paths[i];
|
| | | image orig = load_image_color(path, 0, 0);
|
| | | image sized = resize_image(orig, net.w, net.h);
|
| | | char *id = basecfg(path);
|
| | | network_predict(net, sized.data);
|
| | | get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
|
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
|
| | |
|
| | | char labelpath[4096];
|
| | | replace_image_to_label(path, labelpath);
|
| | |
|
| | | int num_labels = 0;
|
| | | box_label *truth = read_boxes(labelpath, &num_labels);
|
| | | for(k = 0; k < side*side*l.n; ++k){
|
| | | if(probs[k][0] > thresh){
|
| | | ++proposals;
|
| | | }
|
| | | }
|
| | | for (j = 0; j < num_labels; ++j) {
|
| | | ++total;
|
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
|
| | | float best_iou = 0;
|
| | | for(k = 0; k < side*side*l.n; ++k){
|
| | | float iou = box_iou(boxes[k], t);
|
| | | if(probs[k][0] > thresh && iou > best_iou){
|
| | | best_iou = iou;
|
| | | }
|
| | | }
|
| | | avg_iou += best_iou;
|
| | | if(best_iou > iou_thresh){
|
| | | ++correct;
|
| | | }
|
| | | }
|
| | |
|
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
|
| | | free(id);
|
| | | free_image(orig);
|
| | | free_image(sized);
|
| | | }
|
| | | }
|
| | |
|
| | | void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
|
| | | {
|
| | | image **alphabet = load_alphabet();
|
| | | network net = parse_network_cfg(cfgfile);
|
| | | if(weightfile){
|
| | | load_weights(&net, weightfile);
|
| | | }
|
| | | detection_layer l = net.layers[net.n-1];
|
| | | set_batch_network(&net, 1);
|
| | | srand(2222222);
|
| | | char buff[256];
|
| | | char *input = buff;
|
| | | int j;
|
| | | float nms=.4;
|
| | | box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
|
| | | float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
|
| | | for(j = 0; j < l.side*l.side*l.n; ++j) {
|
| | | probs[j] = (float*)xcalloc(l.classes, sizeof(float));
|
| | | }
|
| | | while(1){
|
| | | if(filename){
|
| | | strncpy(input, filename, 256);
|
| | | } else {
|
| | | printf("Enter Image Path: ");
|
| | | fflush(stdout);
|
| | | input = fgets(input, 256, stdin);
|
| | | if(!input) return;
|
| | | strtok(input, "\n");
|
| | | }
|
| | | image im = load_image_color(input,0,0);
|
| | | image sized = resize_image(im, net.w, net.h);
|
| | | float *X = sized.data;
|
| | | clock_t time=clock();
|
| | | network_predict(net, X);
|
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
| | | get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
|
| | | if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
| | | //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
|
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
|
| | | save_image(im, "predictions");
|
| | | show_image(im, "predictions");
|
| | |
|
| | | free_image(im);
|
| | | free_image(sized);
|
| | |
|
| | | wait_until_press_key_cv();
|
| | | destroy_all_windows_cv();
|
| | |
|
| | | if (filename) break;
|
| | | }
|
| | | free(boxes);
|
| | | for(j = 0; j < l.side*l.side*l.n; ++j) {
|
| | | free(probs[j]);
|
| | | }
|
| | | free(probs);
|
| | | }
|
| | |
|
| | | void run_yolo(int argc, char **argv)
|
| | | {
|
| | | int dont_show = find_arg(argc, argv, "-dont_show");
|
| | | int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
|
| | | int json_port = find_int_arg(argc, argv, "-json_port", -1);
|
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
|
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0);
|
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
| | | float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
|
| | | int cam_index = find_int_arg(argc, argv, "-c", 0);
|
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0);
|
| | | int ext_output = find_arg(argc, argv, "-ext_output");
|
| | | if(argc < 4){
|
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
| | | return;
|
| | | }
|
| | |
|
| | | char *cfg = argv[3];
|
| | | char *weights = (argc > 4) ? argv[4] : 0;
|
| | | char *filename = (argc > 5) ? argv[5]: 0;
|
| | | if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
|
| | | else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
|
| | | else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
|
| | | else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
|
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, voc_names, 20, frame_skip,
|
| | | prefix, out_filename, mjpeg_port, 0, json_port, dont_show, ext_output, 0, 0, 0, 0, 0);
|
| | | }
|
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "demo.h" |
| | | |
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void train_yolo(char *cfgfile, char *weightfile) |
| | | { |
| | | char* train_images = "data/voc/train.txt"; |
| | | char* backup_directory = "backup/"; |
| | | srand(time(0)); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | |
| | | int side = l.side; |
| | | int classes = l.classes; |
| | | float jitter = l.jitter; |
| | | |
| | | list *plist = get_paths(train_images); |
| | | //int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.paths = paths; |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.jitter = jitter; |
| | | args.num_boxes = side; |
| | | args.d = &buffer; |
| | | args.type = REGION_DATA; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_in_thread(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < total; ++i){ |
| | | float xmin = boxes[i].x - boxes[i].w/2.; |
| | | float xmax = boxes[i].x + boxes[i].w/2.; |
| | | float ymin = boxes[i].y - boxes[i].h/2.; |
| | | float ymax = boxes[i].y + boxes[i].h/2.; |
| | | |
| | | if (xmin < 0) xmin = 0; |
| | | if (ymin < 0) ymin = 0; |
| | | if (xmax > w) xmax = w; |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void validate_yolo(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | //list *plist = get_paths("data/voc.2007.test"); |
| | | list* plist = get_paths("data/voc/2007_test.txt"); |
| | | //list *plist = get_paths("data/voc.2012.test"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | |
| | | int j; |
| | | FILE** fps = (FILE**)xcalloc(classes, sizeof(FILE*)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box)); |
| | | float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float*)xcalloc(classes, sizeof(float)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | | int t; |
| | | |
| | | float thresh = .001; |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | | int nthreads = 8; |
| | | image* val = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* val_resized = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* buf = (image*)xcalloc(nthreads, sizeof(image)); |
| | | image* buf_resized = (image*)xcalloc(nthreads, sizeof(image)); |
| | | pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t)); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | for(t = 0; t < nthreads; ++t){ |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | time_t start = time(0); |
| | | for(i = nthreads; i < m+nthreads; i += nthreads){ |
| | | fprintf(stderr, "%d\n", i); |
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | val_resized[t] = buf_resized[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i+t < m; ++t){ |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
| | | char *path = paths[i+t-nthreads]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | get_detection_boxes(l, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, classes, iou_thresh); |
| | | print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | | } |
| | | |
| | | if (fps) free(fps); |
| | | if (val) free(val); |
| | | if (val_resized) free(val_resized); |
| | | if (buf) free(buf); |
| | | if (buf_resized) free(buf_resized); |
| | | if (thr) free(thr); |
| | | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | for(j = 0; j < classes; ++j){ |
| | | fclose(fps[j]); |
| | | } |
| | | free(fps); |
| | | } |
| | | |
| | | void validate_yolo_recall(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("data/voc.2007.test"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int side = l.side; |
| | | |
| | | int j, k; |
| | | box* boxes = (box*)xcalloc(side * side * l.n, sizeof(box)); |
| | | float** probs = (float**)xcalloc(side * side * l.n, sizeof(float*)); |
| | | for(j = 0; j < side*side*l.n; ++j) { |
| | | probs[j] = (float*)xcalloc(classes, sizeof(float)); |
| | | } |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | | |
| | | float thresh = .001; |
| | | float iou_thresh = .5; |
| | | float nms = 0; |
| | | |
| | | int total = 0; |
| | | int correct = 0; |
| | | int proposals = 0; |
| | | float avg_iou = 0; |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | char *path = paths[i]; |
| | | image orig = load_image_color(path, 0, 0); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | network_predict(net, sized.data); |
| | | get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms); |
| | | |
| | | char labelpath[4096]; |
| | | replace_image_to_label(path, labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | | } |
| | | } |
| | | |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); |
| | | free(id); |
| | | free_image(orig); |
| | | free_image(sized); |
| | | } |
| | | } |
| | | |
| | | void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer l = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int j; |
| | | float nms=.4; |
| | | box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box)); |
| | | float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) { |
| | | probs[j] = (float*)xcalloc(l.classes, sizeof(float)); |
| | | } |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | } else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input,0,0); |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | clock_t time=clock(); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20); |
| | | save_image(im, "predictions"); |
| | | show_image(im, "predictions"); |
| | | |
| | | free_image(im); |
| | | free_image(sized); |
| | | |
| | | wait_until_press_key_cv(); |
| | | destroy_all_windows_cv(); |
| | | |
| | | if (filename) break; |
| | | } |
| | | free(boxes); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) { |
| | | free(probs[j]); |
| | | } |
| | | free(probs); |
| | | } |
| | | |
| | | void run_yolo(int argc, char **argv) |
| | | { |
| | | int dont_show = find_arg(argc, argv, "-dont_show"); |
| | | int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); |
| | | int json_port = find_int_arg(argc, argv, "-json_port", -1); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | float hier_thresh = find_float_arg(argc, argv, "-hier", .5); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | | } |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, voc_names, 20, 1, frame_skip, |
| | | prefix, out_filename, mjpeg_port, 0, json_port, dont_show, ext_output, 0, 0, 0, 0, 0); |
| | | } |